
Themis: Ambiguity-Aware Network Intrusion Detection based on
Symbolic Model Comparison

Zhongjie Wang
University of California, Riverside

Riverside, CA, USA
zwang048@ucr.edu

Shitong Zhu
University of California, Riverside

Riverside, CA, USA
shitong.zhu@email.ucr.edu

Keyu Man
University of California, Riverside

Riverside, CA, USA
kman001@ucr.edu

Pengxiong Zhu
University of California, Riverside

Riverside, CA, USA
pzhu011@ucr.edu

Yu Hao
University of California, Riverside

Riverside, CA, USA
yhao016@ucr.edu

Zhiyun Qian
University of California, Riverside

Riverside, CA, USA
zhiyunq@cs.ucr.edu

Srikanth V. Krishnamurthy
University of California, Riverside

Riverside, CA, USA
krish@cs.ucr.edu

Tom La Porta
Pennsylvania State University

State College, PA, USA
tlp@cse.psu.edu

Michael J. De Lucia
U.S. Army Research Laboratory

Adelphi, MD, USA
michael.j.delucia2.civ@mail.mil

ABSTRACT

Network intrusion detection systems (NIDS) can be evaded by
carefully crafted packets that exploit implementation-level discrep-
ancies between how they are processed on the NIDS and at the
endhosts. These discrepancies arise due to the plethora of endhost
implementations and evolutions thereof. It is prohibitive to proac-
tively employ a large set of implementations at the NIDS and check
incoming packets against all of those. Hence, NIDS typically choose
simplified implementations that attempt to approximate and gener-
alize across the different endhost implementations. Unfortunately,
this solution is fundamentally flawed since such approximations are
bound to have discrepancies with some endhost implementations.
In this paper, we develop a lightweight system Themis, which em-
powers the NIDS in identifying these discrepancies and reactively
forking its connection states when any packets with “ambigui-
ties” are encountered. Specifically, Themis incorporates an offline
phase in which it extracts models from various popular implemen-
tations using symbolic execution. During runtime, it maintains a
nondeterministic finite automaton to keep track of the states for
each possible implementation. Our extensive evaluations show that
Themis is extremely effective and can detect all evasion attacks
known to date, while consuming extremely low overhead. En route,
we also discovered multiple previously unknown discrepancies that
can be exploited to bypass current NIDS.

CCS CONCEPTS

• Security and privacy→ Intrusion detection systems; • Soft-
ware and its engineering→ Dynamic analysis.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3484762

KEYWORDS

Network intrusion detection system, symbolic execution, TCP
ACM Reference Format:

Zhongjie Wang, Shitong Zhu, Keyu Man, Pengxiong Zhu, Yu Hao, Zhiyun
Qian, Srikanth V. Krishnamurthy, Tom La Porta, and Michael J. De Lu-
cia. 2021. Themis: Ambiguity-Aware Network Intrusion Detection based
on Symbolic Model Comparison. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November
15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3460120.3484762

1 INTRODUCTION

Today, Network Intrusion Detecion Systems (NIDS) play a vital role
in defending against threats emanating from the network. They
employ Deep Packet Inspection (DPI) as an underlying technique;
with DPI, they reassemble network packets to form upper-layer
data streams. The same technique is also extensively applied in var-
ious network devices and midddleboxes, such as those used in ISPs’
traffic classification, copyright enforcement, etc. [16]. However,
NIDS and DPI are known to be inherently vulnerable to evasion
attacks that exploit implementation-level discrepancies stemming
from ambiguities in network protocol specifications. NIDS will
need to interpret network traffic in the same way as endhosts, to
derive accurate information. However, different endhosts may run
slightly different implementations of the same protocol, while tra-
ditional NIDS only incorporate one specific implementation. To be
compatible with various endhost implementations, NIDS typically
opt for a simplified implementation that over-approximates the
behaviors on the endhosts. This in turn, is the underlying cause of
the aforementioned discrepancies.

Many studies [4, 19, 22, 25, 30, 40, 41] have shown that an at-
tacker can unilaterally manipulate its packets to trick the NIDS
into losing track of its connections, and thus, successfully achieve
evasion. In particular, when stateful protocols such as TCP are used,
attackers can inject as few as a single packet to desynchronize the
NIDS with respect to the current connection state permanently. Re-
cently, crafting techniques for evasion have matured from manual

https://doi.org/10.1145/3460120.3484762
https://doi.org/10.1145/3460120.3484762

to automatic strategy generation [2–4, 32, 41], which enables the
quick generation of a large number of successful evasion strategies.
Therefore, the threats faced by NIDS are increasingly severe.

As defenders, we seek to proactively prevent such potential at-
tacks from happening, instead of reactively patching NIDS. In this
paper, we propose a novel framework, Themis, to defend against
evasion attacks. As running all possible network protocol imple-
mentations on a NIDS can be prohibitively expensive, prior work
has proposed to choose a specific implementation for each endhost
that it aims to protect [35]. However, due to the diversity of endhost
implementations and the challenge in tracking the software ver-
sions on all the protected endhosts, such an approach has not been
adopted in practice. In this work, we show that it is not necessary
to choose between the various implementations. Rather, one can
learn the discrepancies among different implementations ahead of
time, and fork the connection states on the NIDS when ambiguous
packets are received. The NIDS will then analyze the plurality of
forked states in parallel, ensuring that one of the connection states
will be synchronized with that of the endhost.

In this paper, we focus on TCP, because it is the underlying pro-
tocol of most application-layer protocols, and widely targeted in
evasion attacks due to its statefulness [3, 4, 41]. To learn the discrep-
ancies between various implementations (especially for TCP with
a long history), Themis leverages symbolic execution to automati-
cally extract high-fidelity models from common endhost network
protocol implementations. Compared to manually reconstructed
models, our models are faithful representations of the actual soft-
ware running on the endhosts, and are guaranteed to have exactly
the same behaviors. Moreover, the extracted models are in the
form of high-level SMT (satisfiability modulo theories) formulas;
thus, it is easy to use SMT solvers to automatically compare two
models to find discrepancies. Upon finding a comprehensive set
of discrepancies, we then build an ambiguity-aware NIDS based
on nondeterministic finite automata (NFA) that can effectively and
simultaneously support multiple different implementations. This
approach has several benefits. First, since we go straight to the end-
host implementations, we can abandon the existing over-simplified
and over-approximatedNIDS implementations that have potentially
many more discrepancies. Second, with the distilled discrepancies,
we no longer need to blindly run many different implementations
(some of them may not exhibit any discrepancy) at the same time.
In fact, our Themis-enabled NIDS forks its connection states only
when ambiguities are encountered and thus, is cost-effective.

The main challenge in applying symbolic execution in practice
is its scalability, especially when the goal is to achieve a complete
analysis on complex modern software [8], as with the TCP imple-
mentation. This is largely due to the nature of the heavyweight anal-
ysis of symbolic execution and well-known problems such as path
explosion. In our work, we employ several techniques to improve
the performance of symbolic execution, without degrading the fi-
delity of the results. Specifically, we leverage state merging [24]
to drastically reduce the cost of symbolic execution and constraint
solving (from days to minutes) with domain knowledge of TCP.

In summary, our main contributions in designing and imple-
menting Themis are the following:

• We use symbolic execution to extract high-fidelity models from
TCP implementations. We solve the scalability challenge in sym-
bolic execution leveraging state merging without degrading the
fidelity of the results. To the best of our knowledge, we are the
first to successfully conduct an exhaustive symbolic execution
on full-fledged modern TCP implementations.
• We use constraint solving to automatically compare the symbolic
models extracted from different versions of Linux kernels, and
then summarize the discrepancies between them. We not only
reproduce all previously reported discrepancies between modern
Linux kernel versions in the past decade, from 3.0 to 5.10, but
also discover a few previously unknown subtle discrepancies.
• We design a novel NFA-based NIDS model that accounts for am-
biguities and identify them during runtime. This model enables
the NIDS to fork its connection states upon encountering a po-
tential ambiguity associated with an incoming packet, to explore
all possible ways that an endhost might handle the packet. We
demonstrate that with Themis, a NIDS can successfully capture
all existing evasion strategies and the new ones presented in this
paper, with negligible additional overhead.

2 BACKGROUND

2.1 NIDS Evasion Based on Traffic Manipulation

NIDS are known to be inherently vulnerable to evasion attacks [30],
which typically exploit discrepancies between network protocol
implementations of the NIDS (e.g., at the IP, TCP and HTTP layers)
and those of the endhosts. Stateful protocols like TCP with complex
implementations are likely to manifest a larger set of discrepancies.
An attacker can send a sequence of specially crafted network pack-
ets with a malicious payload, to make the NIDS and the remote host
reassemble them into different data streams. The NIDS will see the
reassembled data stream without the malicious payload while the
remote host will see the reassembled data streamwith the malicious
payload, and thus, will be subject to attack. Such discrepancies arise
largely due to ambiguities in network protocol specifications, as
well as evolution of such specifications (e.g., new features added
over the years). For example, in TCP implementations based on
RFC 5961 [31], RST packets with sequence numbers in the receive
window but not equal to the next expected sequence number are
no longer accepted; however, older implementations still accept
such RST packets. Different operating systems (OSes) and different
versions thereof, all differ in their implementations. Even subtle
discrepancies have been shown to lead to an evasion attack against
NIDS [41]. Importantly, our observation is that NIDS usually use
much simpler network protocol implementations as compared to
endhosts to reduce their overhead, which widen the gap between
their implementations and those of the endhosts.

Researchers have leveraged these discrepancies to design nu-
merous evasion strategies that can bypass state-of-the-art NIDS [4,
25, 40, 41]. For example, if a RST packet is accepted by a NIDS but
not by an endhost, the NIDS will consider the connection to be
terminated and lose track of the connection. On the other hand, if
a RST packet is accepted by an endhost but not a NIDS, the NIDS
will keep track of this terminated connection and if a later connec-
tion reuses the same 4-tuple, the NIDS will fail to track the new

connection. Similar strategies have been crafted by manipulating
control packets such as SYN or FIN packets, as well as data packets.
On the defense side, mitigations such as traffic normalization [19]
and Active Mapping [35] have been proposed. However, they either
cannot eliminate all ambiguities or require additional information
from endhosts and thus, still leave opportunities for attackers.

The root cause of the problem is that a traditional NIDS applies
a specific network protocol implementation, but there are many
different implementations running on the endhosts, all compliant
with the same protocol specification. Thus, the NIDS cannot always
recover the same information from the network traffic as that by
an endhost. Blindly running all different implementations on the
NIDS can be prohibitive in terms of overhead. In order to solve this
problem, we propose an NFA-based NIDS that forks the connection
state only when ambiguities are encountered. Our approach enables
NIDS to explore the appropriate possibilities, while introducing
relatively low overhead. However, this requires prior knowledge of
existing implementations running on the endhosts. To enable this,
we employ symbolic execution to extract high-fidelity models from
implementations, and empower the NIDS with these models.

2.2 Symbolic Execution and State Merging

Symbolic execution is a formal program verfication technique
to systematically find bugs or verify properties in software pro-
grams [5, 23]. With promising breakthroughs in automatic reason-
ing via SAT and SMT solvers, researchers are now widely adopting
symbolic execution. Due to its heavyweight analysis, symbolic ex-
ecution can still only be applied to a small scope of the program,
and has to be carefully tuned to avoid uncontrollable path explo-
sions. In addition, practical programs may contain external code
not traceable by the symbolic executor, or complex constraints
involving non-linear arithmetic or transcendental functions [1].
To make symbolic execution more practical, researchers have pro-
posed “concolic” execution [26], a mixture of concrete execution
and symbolic execution, which allows concrete execution to kick
in when symbolic execution is incapable or inefficient in dealing
with certain parts of the program.

Selective symbolic execution [13] is an innovative form of “con-
colic” execution that allows switching between symbolic execution
and concrete execution at code boundaries. This will restrict sym-
bolic execution only within the scope of interest, while running
other parts of the code (e.g., libraries and system calls) with the
much faster concrete execution. Defining the boundary between
symbolic execution and concrete execution is usually tricky. An
exhaustive symbolic execution is theoretically both sound and com-
plete. Here soundness means all inputs derived are guaranteed to
yield expected outcomes, i.e., no false positives; completenessmeans
all inputs are covered, i.e., no false negatives. Selective symbolic
execution may have impacts on both soundness and completeness
while improving performance, because it doesn’t completely model
all possible outcomes of the code being executed concretely. There-
fore, we need to carefully define the scope of symbolic execution
to make sure no side effects that may impact the main logic will be
introduced by the code out of scope. If any side effects were intro-
duced, we may miss them and be subject to loss of soundness and
completeness (by introducing false positives and false negatives).

In the Linux kernel, we only run symbolic execution on the TCP
core logic, while leaving other parts of the kernel as out of scope.

Prior works [7, 10, 41] have used symbolic execution to verify
properties or discover bugs in programs. However, they randomly
explore only parts of the program, and get partial coverage. These
approaches aim at opportunistically finding bugs rather than achiev-
ing complete coverage. This causes loss of both completeness and
soundness, and leads to false negatives and false positives. Differ-
ently, our goal is to extract a complete model of the target code we
are interested in, so that we can retain completeness and soundness,
which means no false negatives or false positives. As discussed, scal-
ability is known to be the biggest challenge in symbolic execution.
The problem worsens when running symbolic execution on bina-
ries rather than on source codes, since more branches could be
introduced into the low-level assembly code after compilation.

To achieve scalability, researchers have proposed state merg-
ing [20], which can reduce the number of execution paths in sym-
bolic execution, but at the cost of introducing harder-to-solve con-
straints for the constraint solver. We use an example in Listing 1
to illustrate the rationale of state merging. A symbolic execution
state is defined as a 3-tuple (ℓ, 𝜎, 𝜋). ℓ denotes the current program
location; 𝜎 denotes the symbolic store that stores all symbolic and
concrete values associated with the current state; 𝜋 denotes the
path constraints. In Figure 1 and Figure 2, we demonstrate the
process of symbolic execution without and with state merging re-
spectively. Without state merging, a state forks when a conditional
branch is encountered and both branches are feasible. The num-
ber of states doubles each time and so, there will be 4 states after
two branches. With state merging, two states at the same ℓ can be
merged by: 1) combining their paths constraints 𝜋 with a logical
OR; 2) merging their symbolic stores 𝜎 with if-then-else (ITE) ex-
pressions. For example, when two states (ℓ : 8, 𝜎 : 𝑎 = 5, 𝜋 : 𝑥 > 10)
and (ℓ : 8, 𝜎 : 𝑎 = −5, 𝜋 : 𝑥 ≤ 10) meet at ℓ 8, their paths constraints
are merged into 𝑥 > 10 ∨ 𝑥 ≤ 10, which can be simplified to 𝑡𝑟𝑢𝑒 ,
and the value of variable 𝑎 becomes 𝑖𝑡𝑒 (𝑥 > 10, 5,−5).

1 int foo(int x, int y) {

2 int a = 0;

3 if (x > 10) {

4 a = 5;

5 } else {

6 a = -5;

7 }

8 if (y == 1) {

9 ++a;

10 } else {

11 --a;

12 }

13 return a;

14 }

Listing 1: Sample code snippet for state merging

After two rounds of state merging, we have only one state. By
comparing the results with and without state merging, we find
that in the latter case, there are an exponential number of states,
concrete values for variable 𝑎, and complex path constraints. In con-
trast, with state merging, there are much fewer states, much simpler
path constraints, but complex expressions for symbolic variables.
Because ITE expressions introduce more complex expressions that

a = 0 (true)

3. if (x > 10)

a = 0 (x > 10)

4. a = 5;

a = 0 (x ? 10)

6. a = -5;

a = 5 (x > 10)

8. if (y == 1)

a = 5 (x > 10 ? y = 1)

9. ++a;

y = 1

x > 10 x ? 10

a = 5 (x > 10 ? y ? 1)

11. --a;

y ? 1

a = -5 (x ? 10)

8. if (y == 1)

a = -5 (x ? 10 ? y = 1)

9. ++a;

a = -5 (x ? 10 ? y ? 1)

11. --a;

y = 1 y ? 1

a = 6 (x > 10 ? y = 1)

13. return a;

a = 4 (x > 10 ? y ? 1)

13. return a;

a = -4 (x ? 10 ? y = 1)

13. return a;

a = -6 (x ? 10 ? y ? 1)

13. return a;

Figure 1: Symbolic execution without state merging

a = 0 (true)

3. if (x > 10)

a = 0 (x > 10)

4. a = 5;

a = 0 (x ? 10)

6. a = -5;

a = ite(x > 10, 5, -5) (true)

8. if (y == 1)

a = ite(x > 10, 5, -5) (y = 1)

9. ++a;

a = ite(x > 10, 5, -5) (y ? 1)

11. --a;

a = ite(y = 1, ite(x > 10, 5, -5) + 1, ite(x > 10, 5, -5) - 1) } (true)

13. return a;

y = 1 y ? 1

x > 10 x ? 10

Figure 2: Symbolic execution with state merging

are translated into disjunctions, they may cause significant over-
head in constraint solving, and eventually negate the benefits from
state merging [20]. Essentially, we are shifting the burden from the
symbolic executor to the constraint solver, and thereby need a good
balance. Kuznetsov et al. [24] provide insights into the problem and
show that two states should be merged if the variables they differ
in, are less frequently used in later queries to the constraint solver.

3 OFFLINE PHASE: DISCOVERING TCP

IMPLEMENTATION DISCREPANCIES

The offline phase of Themis that finds discrepancies between any
two TCP implementations has three key components, as shown in
Figure 3. The first component is Symbolic Model Extraction, which
runs symbolic execution exhaustively on different versions of TCP
implementations and extracts high-fidelity models to accurately
reflect detailed behaviors of each implementation. The second is
called Model Comparison, which compares two symbolic models
and automatically generates concrete examples that will trigger
the discrepancies between them. The last is Discrepancy Analysis,
which empirically analyzes the execution traces corresponding to
the concrete examples and determines the root cause of a discrep-
ancy. The process is iterative in that we feed the discrepancies

summarized from Discrepancy Analyis back to the Model Compari-
son to exclude them from the models in the next round of concrete
example generation, until there are no discrepancies between the
two models. The discrepancies discovered will be integrated into
the NIDS to enable online operations of Themis as discussed in §4.

3.1 Symbolic Model Extraction

Finding low-level discrepancies between two TCP implementations
is a daunting task, because of the huge number of possible states
in the program. Such discrepancies could be buried deep, in some
rarely visited states. To formalize, discrepancies occur when two
implementations generate different outputs given the same input.
With respect to the NIDS evasion attacks, a discrepancy occurs
when two TCP implementations produce different reassembled
data streams, when they receive the same sequence of TCP packets.
To aid the discovery of discrepancies, we first define a set of critical
states 𝑆 as intermediate states that precede our target output (i.e.,
the reassembled data stream). We consider two types of critical
states as follows: (a) the TCP states, e.g., LISTEN, SYN_RECV, ES-
TABLISHED, CLOSE, and (b) receive buffer events, e.g., whether
a packet enters the TCP in-order queue or out-of-order queue. In-
tuitively, if the same sequence of input packets drives two TCP
implementations into two different TCP states or into accepting
different payloads in the TCP receive buffers, such discrepancies
are bound to be exploitable.

As shown in Figure 4, via exhaustive symbolic execution, we
extract a mapping𝑀 between the path constraints Π and the crit-
ical states 𝑆 , denoted as 𝑀 : Π → 𝑆 . Since path constraints are
constraints on the inputs, this translates to summarizing the re-
lationships between inputs and critical states. By combining all
the path constraints that lead to a critical state with disjunction,
we can automatically obtain the weakest precondition [15] of the
critical state. The weakest precondition, denoted as 𝑤𝑝 (𝑆, 𝑅), is
the condition that characterizes all possible initial states making a
system 𝑆 terminate in a final state that establishes the truth of an
assertion (post-condition) 𝑅. The term “weak” or “strong” allude to
how general or specific a condition is. The weakest precondition
is basically the most general constraints that should be satisfied
in order to satisfy a given postcondition. Weakest precondition is
commonly used in the generation of verification conditions [15]. In
our setting, the postconditions are the critical states that we label.
Therefore, we have the following equation, in which 𝐼 denotes the
TCP implementation:

𝑤𝑝 (𝐼 , 𝑠) =
∨

𝑀 (𝜋𝑖)=𝑠
𝜋𝑖 (1)

To provide a concrete example of a discrepancy leading to dif-
fering path constraints in different versions of the TCP implemen-
tation, we show in Listing 2 and Listing 3 how Linux validates
incoming RST packets in different versions. In Linux kernel ver-
sions before 3.6, when in the ESTABLISHED state, it accepts a RST
packet as long as its sequence number is within the current re-
ceive window (Line 6); it then resets the connection and enters
the CLOSE state (Line 13). In versions after 3.6, Linux developers
implemented the defense mechnism from RFC 5961 [31], which
performs a much stricter check on RST packets. These versions only
accept a RST packet if its sequence number exactly matches the

Offline Phase

Symbolic
Model

Extraction

Model
Comparison

Discrepancy
Analysis

Robust
NIDS

TCP
Model

TCP
Model

TCP
Impl

TCP
Impl

Concrete
Example

Discrepancy

Online Phase

Figure 3: System Overview of Themis

Labeled
Linux
TCP
Stack

Symbolic Execution
Engine

Execution Trace 1

Execution Trace 2

Execution Trace 3

Execution Trace n

Label

Label

Label

Label

Symbolic Model

Figure 4: Symbolic Model Extraction

next expected sequence number 𝑟𝑐𝑣_𝑛𝑥𝑡 (Line 19). In this case, the
two implementations differ in the path constraints relating to the
CLOSE state. In the earlier versions, the differing path constraints
include 𝑟𝑐𝑣_𝑛𝑥𝑡 < 𝑠𝑒𝑞_𝑛𝑢𝑚 < 𝑟𝑐𝑣_𝑛𝑥𝑡 +𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 ; in the latter
versions, the differing path constraints include 𝑠𝑒𝑞_𝑛𝑢𝑚 = 𝑟𝑐𝑣_𝑛𝑥𝑡 .
1 static int tcp_validate_incoming(struct sock *sk,

struct sk_buff *skb , struct tcphdr *th, int
syn_inerr)

2 {

3 ...

4 /* Step 1: check sequence number */

5 if (! tcp_sequence(tp, TCP_SKB_CB(skb)->seq ,

TCP_SKB_CB(skb)->end_seq)) {

6 ...

7 goto discard;

8 }

9 /* Step 2: check RST bit */

10 if (th->rst) {

11 tcp_reset(sk);

12 goto discard;

13 }

14 ...

15 }

Listing 2: Validation of RST packets in Linux kernel versions

before 3.6

1 static bool tcp_validate_incoming(struct sock *sk,

struct sk_buff *skb , const struct tcphdr *th,

int syn_inerr)

2 {

3 ...

4 /* Step 1: check sequence number */

5 if (! tcp_sequence(tp, TCP_SKB_CB(skb)->seq ,

TCP_SKB_CB(skb)->end_seq)) {

6 ...

7 goto discard;

8 }

9 /* Step 2: check RST bit */

10 if (th->rst) {

11 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)

12 tcp_reset(sk);

13 else
14 tcp_send_challenge_ack(sk, skb);

15 goto discard;

16 }

17 ...

18 }

Listing 3: Validation of RST packets in Linux kernel versions

after 3.6

3.1.1 Eliminating Non-determinism in TCP Processing. To extract a
deterministic model from a TCP implementation, we need to first
eliminate any non-determinism in TCP. Non-determinism can cause
symbolic execution to explore different parts of the code in different
runs, and thus causes false positives, i.e., “discrepancies” found be-
tween non-deterministic models may not exist between the actual
implementations. We fix the order of symbolic path exploration,
run symbolic execution multiple times, and then compare the dif-
ferences in path coverage in order to find any non-determinism
that might exist. Note that non-determinism is always introduced
by concrete inputs, because symbolic inputs will enable forking
in symbolic execution and exploration of all feasible paths. One
example of such concrete inputs is a random number generated
during execution, e.g., the initial sequence number in TCP. Since we
model the server-side logic of a TCP implementation, we assume
the client-side sequence number is controllable by the attacker and
thus symbolize it. Meanwhile, we hook the random number gen-
erator for the server-side initial sequence number and coerce it to
always return a fixed number to eliminate non-determinism.

Other non-determinism may be introduced due to variations in
the execution times of symbolic execution; this would influence
factors such as (but not limited to): 1) Timeouts (e.g., TCP connec-
tion timeout, packet transmission timeout); 2) Congestion control
window size computations; 3) Round-trip time (RTT) calculations;
4) Receive buffer size computations; 5) Delayed ACK computations;
6) MTU probing; 7) Rate-limits (e.g., out-of-window ACKs, chal-
lenge ACKs); 8) Socket locking by the user thread (affected by the
timing of kernel and user thread switching). To eliminate the non-
determinism introduced by the variation of execution time, we hook
the TCP access to the system clock and always return deterministic

values. This could potentially lead to reduced code coverage (e.g.,
no timeouts). We argue that this is a reasonable decision because
even if a discrepancy exists in such timing-related code blocks, it
can be unreliable to use such a discrepancy to perform an evasion
attack. In fact, we have not seen any report of such discrepancies
leveraged to that effect. In our experiments, we freeze the clock by
always returning the same exact value.

3.1.2 State Merging to Achieve Scalability. To handle path explo-
sion in symbolic execution, we adopt the idea of state merging
from [24]. There is a gamut of state merging options on a program,
from complete separation of individual execution traces (no merg-
ing) to aggressively merging two states whenever their execution
traces join (static state merging). As discussed in §2, state merging
reduces repetitive work of executing the same code blocks in sym-
bolic execution at the cost of introducing harder-to-solve formulas
in constraint solving. Specifically, if a variable holds two different
values (either concrete or symbolic) in two states, after merging,
the value of the variable will become an ITE expression, which will
increase the burden of the constraint solver. Too aggressive state
merging may even harm performance rather than improve it [20].
Hence, we employ state merging following the general suggestions
from [24] as well as the domain knowledge of TCP.

Specifically, we first collect a list of fork points during an initial
run of symbolic execution. Then we mark merge range candidates
with the fork points as the starting points and their immediate
post-dominators as the ending points. The start and end points
form candidate merge ranges. After that, we manually inspect each
candidate and the variables being modified within it, and decide
whether to label it as a merge range based on the following heuris-
tics: 1) the critical state variables should not be modified within the
merge range; otherwise, paths belonging to different critical states
may get merged, and it becomes complicated to group execution
traces by critical states in the later phase; 2) no dynamic memory
allocation or deallocation should occur within the candidate range;
otherwise, pointers may become symbolic after merging, which will
induce complexity and extra overheads; this also includes sending
packets, because it will dynamically allocate new buffers for the
packets to be sent; 3) no excessive number of variables modified
within the candidate range (especially if there are TCP-related state
variables that will be used heavily subsequently); otherwise, extra
complexity will be introduced in constraint solving later. Note that
these heuristics can be potentially automatically applied with the
help of static analysis. Nevertheless, we consider it an orthogonal
component which can be improved upon separately. We leave the
automation of the merge range determination as a future work.

Finally, during the actual symbolic execution, the labelled merge
ranges are applied accordingly. If the merge ranges are nested, we
first merge the innermost ranges, and then the outer ones.

3.2 Model Comparison

The symbolic model extracted in the previous step is in the form
of a mapping from path constraints on inputs, to critical states,
as shown in Figure 4. Here the critical states can be considered
as the intermediate states that are directly related to the output
state, which is the reassembled data stream that will be passed to
the application layer. Instead of finding the differences in critical

Execution Trace

Execution Trace

Label

Label

Symbolic Model 1

Execution Trace

Execution Trace

Label

Label

Execution Trace

Execution Trace

Label

Label

Execution Trace Label

Execution Trace

Execution Trace

Label

Label

Symbolic Model 2

Execution Trace

Execution Trace

Label

Label

Execution Trace

Execution Trace

Label

Label

Execution Trace Label

Constraint
Solver

Figure 5: Symbolic Model Comparison

states given the same input, we try to find the differences in inputs
given the same critical state. Specifically, we group the exectuion
traces by critcal states, and then combine their path constraints
with disjunction. The combined path constraints reflect all possible
inputs that will drive the TCP implementation into the critical state,
which is also equivalent to the weakest precondition of the critical
state. Then we compare the combined path constraints from two
different TCP implementations, for each of the critical states, as
shown in Figure 5. Note that the path constraints are represented in
a format (SMT-LIB [37]) that can be directly processed by constraint
solvers; thus, we can automatically test if two path constraints
are equivalent using state-of-the-art constraint solvers such as
Z3 [42]. The constraint solver will either prove that the two path
constraints are equivalent or generate a concrete counterexample
that is accepted by one of the path constraints but not the other.

3.3 Discrepancy Analysis

From the counterexample generated from the last step, we can craft
TCP packets that will trigger the discrepancy between the two TCP
implementations. However, our goal is to learn a class of packets
that belong to a specific discrepancy (e.g., RST packets with in-
window sequence number) and then, summarize the discrepancy
in general. To this end, we first feed the TCP packets generated
from a counterexample, to both TCP implementations and record
the execution traces, respectively. Then, we manually reason about
the root cause of the difference in their execution traces. Since
the execution traces are from two different implementations, we
cannot directly compare them to find the discrepancy. Further,
they are at the binary level and little information is provided. To
ease the analysis, we translate the binary-level execution traces to
source-code-level execution traces. From there, we can focus on the
symbolic branch traces and easily identify the differences and the
critical branches. Subsequently, we summarize the difference into a
symbolic formula, which can be used to identify the discrepancy.
The symbolic formula is fed back to the model comparison phase,
to exclude discrepancies that have already been found; so we can
iteratively discover new discrepancies until none exist. To exclude
a discrepancy from a model, we need to perform a conjunction with
the negation of the symbolic constraint of the discrepancy on the
original path constraints. The algorithm is shown in Algorithm 1.

Algorithm 1 Finding discrepancies between two implementations
1: function FindAllDiscrepancies(𝐼1, 𝐼2)
2: 𝐴𝑙𝑙𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 ← ∅
3: 𝑀1 ← ExtractSymbolicModel(𝐼1)
4: 𝑀2 ← ExtractSymbolicModel(𝐼2)
5: for 𝑠 ∈ all critical states in𝑀1 or𝑀2 do
6: 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 ← CompareSymbolicModels(𝑀1, 𝑀2, 𝑠)
7: 𝐴𝑙𝑙𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 = 𝐴𝑙𝑙𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 ∪𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠

8: end for

9: return𝐴𝑙𝑙𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠

10: end function

11: function CompareSymbolicModels(𝐼1, 𝐼2, 𝑀1, 𝑀2, 𝑠)
12: 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 ← ∅
13: Π1 ←

∨
𝑀1 [𝜋]=𝑠 𝜋

14: Π2 ←
∨

𝑀2 [𝜋]=𝑠 𝜋
15: 𝑅𝑒𝑠𝑢𝑙𝑡,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒 ← SolveConstraints(Π1 = Π2)
16: while 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑢𝑛𝑠𝑎𝑡 do

17: 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ← DiscrepancyAnalysis(𝐼1, 𝐼2,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒)
18: 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦)
19: Π1 ← Π1\𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

20: Π2 ← Π2\𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

21: 𝑅𝑒𝑠𝑢𝑙𝑡,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒 ← SolveConstraints(Π1 = Π2)
22: end while

23: return 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠

24: end function

25: function DiscrepancyAnalysis(𝐼1, 𝐼2,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒)
26: 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒1 ← TraceExecution(𝐼1,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒)
27: 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒2 ← TraceExecution(𝐼2,𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐸𝑥𝑎𝑚𝑝𝑙𝑒)
28: 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 ← RootCauseAnalysis(𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒1, 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒2)
29: return 𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦

30: end function

An alternative workflow is to find a counterexample, exclude the
path constraints corresponding to that, from both symbolic models,
and then find the next counterexample. This would decouple the
Symbolic Model Comparison from the Discrepancy Analysis, and
make the former fully automated. However, there can be a large
number of execution traces corresponding a single discrepancy,
and so it could take much longer to exclude a discrepancy than
using the feedback from the Discrepancy Analysis directly (our
initial studies indicate this is the case). Besides, an execution trace
may cover more than one discrepancy and thus the exclusion of an
entire trace may remove more than the current discrepancy. Thus,
we did not pursue this second approach in our work.

3.4 Finding Discrepancies in Linux TCP Stack

In this work, we seek to find discrepancies in the TCP stack be-
tween different versions of the Linux kernel, but our method could
be applied to other OSes as well. Suppose we choose 𝑛 Linux ker-
nel versions to analyze, and sort them by version numbers. We
will compare each pair of adjacent Linux kernel versions using the
approach described earlier, and summarize the discovered discrep-
ancies. Ideally, we should compare every pair of versions to find
all discrepancies that exist among them; however, since the Linux
versions are ordered, we argue that it is sufficient to just compare
adjacent versions and still get the same result. Assuming there are
three versions in order, 𝑣1, 𝑣2, and 𝑣3, if there is no discrepancy
between 𝑣1 and 𝑣2, nor between 𝑣2 and 𝑣3, then it is unlikely that
there will be a discrepancy between 𝑣1 and 𝑣3. We give a proof
by contradiction as follows. If there was a discrepancy between 𝑣1
and 𝑣3, then there must be some difference in the path constraints
relating to some critical state, between 𝑣1 and 𝑣3. This difference
must have been introduced either between 𝑣1 and 𝑣2, or between

E

C

RST
w/ MD5

E

C

RST
w/ MD5 E

C

RST
w/ MD5

E: Established C: Closed

RST
w/ MD5

Figure 6: Merging DFAs into NFA

𝑣2 and 𝑣3. Therefore, we must be able to catch that, either when
comparing 𝑣1 and 𝑣2, or when comparing 𝑣2 and 𝑣3.

4 ONLINE PHASE: AMBIGUITY-AWARE NIDS

4.1 NFA-Based Model for NIDS

Stateful network protocols are usually modeled as Deterministic
Finite Automata (DFA) to make sure that different parties associated
have deterministic behaviors and are well-synchronized. NIDS also
use DFA-based network protocol implementations (as do the end-
hosts). However, this makes them conform to a specific version of
a protocol implementation, and may have discrepancies with other
versions. This leaves opportunities for attackers to evade them. In
order to ensure compatibility with different versions of the network
protocol implementation, we propose a novel, NFA-based model for
NIDS. In Nondeterministic Finite Automata (NFA), upon receiving
an input, the state could non-deterministically transition into any
of multiple different new states. If there is any possibility that the
state transitions into an accepting state, the input is accepted. In
order to capture every possibility, an NFA needs to “clone” its state
when there are multiple possible state transitions [36]. Thus, the
NFA-based model enables the NIDS to handle packets with am-
biguities i.e., compatible with different packet handling logics of
different versions.

Discrepancies across TCP implementations project ambiguities
to the NIDS when handling packets. We define an ambiguity as a 3-
tuple, (𝜑, 𝜆1, 𝜆2), derived from the discrepancies found by Themis as
discussed in §3. 𝜑 denotes the symbolic formula characterizing all
possible inputs that trigger the behavioral differences between two
implementations. 𝜆1 and 𝜆2 denote the differing behaviors of the
two respective implementations. We integrate the ambiguities into
the existing DFA of the NIDS and turn it into an NFA. 𝜑 is the guard
or predicate of the transition. There are two output states, and 𝜆1
and 𝜆2 are the corresponding transition functions. In this way, we
are merging multiple DFAs into an NFA while reusing the common
parts in the DFAs to the maximum extent possible. An example is
shown in Figure 6. When processing a RST packet with a TCP MD5
option, an earlier version of Linux accepts it while a later version
discards it. After merging the two DFAs, the NFA will explore both
possibilities in parallel. Rather than running two DFAs side by side,
Themis allows maximized reusability of the code and expedites
packet processing.

When processing a packet that causes an ambiguity, the NFA-
based NIDS will “fork” its currently maintained state for the TCP
connection and process it with 𝜆1 and 𝜆2 respectively. Note that for
each connection and ambiguity, we only fork once and remember

R0 R4R1 R2a1 a2 a3 Linux
kernel
version

R3 a4

Figure 7: Example: version ranges defined by ambiguities

the behavior associated with each copy of the connection state.
Assuming there are 𝑘 ambiguities, then the upper bound of the
number of connection state copies is 2𝑘 . If the attacker is also
aware of the ambiguities, then he can intentionally inject them
into his traffic and cause an exponential growth in the number of
connection states on the NIDS, as a resource exhaustion attack. As
a further optimization, we take version coherence of the behaviors
into account and reduce the growth rate to a linear rate.

4.2 Version Coherence

Since ambiguities are introduced in certain versions as code changes,
versions between two adjacent ambiguities have the same behaviors
with regard to all ambiguities. Thus we only need to maintain
one connection state for those versions in a range. We divide the
version space of a particular implementation into version ranges by
ambiguities. Given that the ambiguities are found from comparing
adjacent versions (mentioned in §3.4), the ambiguities are naturally
ordered as well. For example, if we find 4 ambiguities through our
offline symbolic model comparison, and sort them by the versions
in which they were introduced, say 𝑎1 < 𝑎2 < 𝑎3 < 𝑎4, they will
divide the version space into 5 ranges, 𝑅0, 𝑅1, 𝑅2, 𝑅3, and 𝑅4, as
shown in Figure 7. Each range corresponds to a set of TCP behaviors
that are consistent with regard to all ambiguities. For example, 𝑅1
represents the behaviors consistent with the new behavior of 𝑎1
and the old behavior of 𝑎2, 𝑎3, 𝑎4.

Our observation is that given a specific TCP implementation, its
behavior must fall under one of the ranges. Therefore, following the
above example, in the worst case, we should only need to maintain
at most 5 connection states, which is 𝑘 + 1, as opposed to 2𝑘 . To see
this, consider that the NIDS first encounters ambiguity 𝑎1 during
the online phase; it will then fork into two connection states 𝑠1
and 𝑠2, where 𝑠1 represents the range 𝑅0, and 𝑠2 represents the
range from 𝑅1 to 𝑅4. If the NIDS then encounters 𝑎2, 𝑠2 will then
be forked into 𝑠3 and 𝑠4, representing the range 𝑅1, and 𝑅2 to 𝑅4. It
is important to note that 𝑠1 is not forked at this step because the
newly discovered ambiguity 𝑎2 is irrelevant to that state. In other
words, the NIDS already accounts for any server behaviors that are
consistent with 𝑅0, and we assume the server’s behavior cannot
change arbitrarily to those consistent with 𝑅2, 𝑅3, or 𝑅4 suddenly
(the server is not malicious). From hereon, it is not hard to see that
if the NIDS discovers 𝑎3 and 𝑎4 subsequently, we will end up with
exactly 5 connection states.

Note that there is a special case where multiple ambiguities may
relate to the same kind of packets, i.e, they have overlapping input
spaces 𝜑 . For example, a RST packet with sequence number equals
to the end of the rightmost SACK block is also an in-window RST
packet. It corresponds to both Discrepancy 3 and 7 in Table 2. In
this case, each version range should follow the behavior of the
nearest ambiguity if conflicting behaviors are encountered. Upon

Algorithm 2 Handling packets with ambiguities in NIDS
1: procedure OnPacketReceived(𝑃𝑎𝑐𝑘𝑒𝑡)
2: 𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← ∅
3: for𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒 ∈ 𝐴𝑙𝑙𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠 do
4: 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑖𝑒𝑠 ← CheckAmbiguities(𝑃𝑎𝑐𝑘𝑒𝑡,𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒)
5: for𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷 ∈ 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑖𝑒𝑠 do

6: if 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 [𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷] = 𝑈𝑛𝑑𝑒𝑓 𝑖𝑛𝑒𝑑 then

7: 𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒 ← Fork(𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒)
8: for 𝑖 ∈ [𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷,𝑀𝑎𝑥𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷) do
9: 𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 [𝑖] ← 𝑂𝑙𝑑

10: end for

11: for 𝑖 ∈ [0, 𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷) do
12: 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 [𝑖] ← 𝑁𝑒𝑤

13: end for

14: 𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒)
15: end if

16: end for

17: end for

18: 𝐴𝑙𝑙𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝐴𝑙𝑙𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠 ∪ 𝑁𝑒𝑤𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠

19: for𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒 ∈ 𝐴𝑙𝑙𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒𝑠 do
20: HandlePacketWithAmbiguities(𝑃𝑎𝑐𝑘𝑒𝑡,𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒)
21: end for

22: end procedure

23: procedure HandlePacketWithAmbiguities(𝑃𝑎𝑐𝑘𝑒𝑡,𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒)
24: for𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷 ∈ 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑖𝑒𝑠 do

25: Skip if conflicting ambiguities occur and𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷 is not the closest
26: if 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 [𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷] = 𝑂𝑙𝑑 then

27: Implementation of the old behavior
28: else if 𝐶𝑜𝑛𝑛𝑆𝑡𝑎𝑡𝑒.𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑠 [𝐴𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦𝐼𝐷] = 𝑁𝑒𝑤 then

29: Implementation of the new behavior
30: end if

31: end for

32: Processing packets without ambiguities
33: end procedure

receiving such a packet, the NIDS will fork twice and creates three
version ranges. Because the old behaviors of Discrepancy 3 and 7
are conflicting, so the version range before Discrepancy 3 should
follow the old behavior of Discrepancy 3, rather than Discrepancy
7. Similarly, the version range after Discrepancy 7 should follow
the new behavior of Discrepancy 7, rather than Discrepancy 3.

In Algorithm 2, we show the algorithm used in Themis for han-
dling packets with ambiguities in the NIDS.

5 EVALUATION

In this section, we first evaluate Themis’s symbolic-execution-based
discrepancy discovery, and list the discrepancies found between
different versions of Linux. Next, we evaluate Themis’s augmented
NIDS by integrating all the discrepancies discovered, and show its
(1) effectiveness in defending against all existing and newly discov-
ered evasion attacks and (2) performance overhead at runtime.

5.1 Symbolic-execution-based Discrepancy

Discovery

Themis’s offline components described in §3, are built upon S2E [13]
and Z3 [42]. We implement (a) our TCP symbolic execution as S2E
plugins, and (b) model comparison and discrepancy analysis with
Python scripts using Z3. We run Themis on a machine with an
AMD EPYC 7542 Processor (2.9GHz, 32-core, 64-thread), and run
symbolic execution with 64 processes in parallel.

5.1.1 Performance of Symbolic Execution and Model Comparison.

In our exhaustive symbolic execution, we bound the input to 3
symbolic TCP packets with TCP options and payloads, and run
until all execution paths finish. We symbolize the TCP header fields

except the TCP checksum. This can cover all server-side TCP states,
including LISTEN, SYN_RECV, NEW_SYN_RECV, ESTABLISHED,
CLOSE_WAIT, CLOSE, and critical states related to receive buffer
(e.g., receipt of in-order data or out-of-order data). Note that there
are other TCP states requiring the endhost to actively initiate or
close a connection. Since we are modeling the servers’ behaviors,
we leave the exploration of those TCP states to future work.

In our initial attempt of exhaustive symbolic execution without
state merging on the Linux TCP stack (on version 4.4), we send 3
symbolic packets without any TCP options; it took 13.5 hours on
average to finish. The total number of execution paths is 1,219,938.
After enabling state merging, it takes less than 4 minutes to finish,
and the total number of execution paths decreases to 1386. Using
the heuristics provided in §3, we labeled 24 merge ranges. They are
mainly related to ECN (Explicit Congestion Notification), window
size, MSS (Maximum Segment Size), and urgent pointer. It takes us
on average, one day to do the manual labeling for a Linux kernel
version. In addition, without state merging, it takes more than a
week to compare the rather huge models (with more than one
million paths) extracted from Linux kernel versions 4.4 and 5.4.
Instead, it takes only 15 seconds to compare two models (with
about 1000∼2000 paths) after enabling state merging.

5.1.2 Themis’s Discrepancy Discovery. We analyzed 5 major LTS
Linux kernel versions spanning over the past decade, viz., 3.0, 3.10,
4.4, 5.4, and 5.10. For each version, we run exhaustive symbolic
execution with state merging and send 3 symbolic packets, with and
without TCP options. Since TCP options are usually not correlated
with each other, we try each TCP option individually instead of
combining them. We also symbolize the values in each TCP option.
For the experimental results without TCP options, the numbers of
execution paths relating to each critical state are shown in Table 1.
Note that, these numbers are based on merged execution paths, and
are affected by the labeled merge ranges.

We list all the discrepancies found by Themis in Table 2. We also
validate our findings with the commit history of the Linux kernel,
and note the date and version when a discrepancy was first intro-
duced. As one can see, most of the discrepancies were introduced
around 2012, while some newer ones were introduced around 2017.
A major reason contributing to these discrepancies, is the change
proposed in RFC 5961 [31], a mitigation against blind in-window
attacks. The RFC introduces stricter checks on the sequence and
acknowledgment numbers in SYN, RST and data packets. This leads
to the Discrepancies 2, 3, and 4. A second reason is buggy imple-
mentations when validating a TCP packet. Discrepancy 1 is caused
by the older versions not doing a propoer validation on TCP flags in
the LISTEN state, and accepting invalid TCP flag combinations, i.e.,
SYN+FIN. Discrepancy 5 is due to older versions not checking ACK
flags when processing data packets. Discrepancy 9 is due to older
versions mistakenly bypassing the acknowledgment number check-
ing in certain states, e.g., CLOSE_WAIT, CLOSING, LAST_ACK.
Other reasons stem from performance improvements and compati-
bility with other OSes. Discrepancy 6 was introduced by a fix to the
implementation of the Fast Retransmit/Fast Recovery algorithm.
Discrepancy 7 was introduced for performance optimization when
SACK is enabled and packet loss happens frequently. Discrepancy
8 was introduced to handle an idiosyncrasy associated with Mac

Table 1: Number of execution paths grouped by criti-

cal states in different versions of Linux kernel

Version All SR EST CW CL IO OOO
3.0 2966 2841 919 588 84 372 1454
3.10 2344 2128 574 350 40 284 796
4.4 1386 1170 302 181 20 149 410
5.4 2214 1998 729 650 49 428 1140
5.10 2314 2250 863 678 51 440 1322
Notation: SR - SYN_RECV/NEW_SYN_RECV; EST - ESTAB-
LISHED; CW - CLOSE_WAIT; CL - CLOSE; IO - In-order data;
OOO - Out-of-order data. The results are accquired with state
merging enabled.

OSX clients, which may leave a connection that is supposed to be
closed, in a lingering state.

We manually inspected the changes to the TCP stack in Linux
from version 3.0 to 5.10, and confirmed that the discrepancies listed
in Table 2 hold true, and no other discrepancies are found. In addi-
tion, we measured these discrepancies on Alexa’s top 1 million web-
sites from the client side, by sending probe packets to the servers
and collecting responses. We find that both old and new behaviors
are observed for all discrepancies, which means today’s NIDS can
only either incorporate the older or the newer version but not both.
This leaves the remaining servers vulnerable to attacks.

In addition to implementation-level discrepancies, we also found
some differences in default configurations. Although the TCP MD5
option was introduced in version 2.6.20 in 2006, it was an experi-
mental feature and by default disabled until version 3.9 in 2013. The
initial window sizes are different between versions 4.4 and 5.4; this
is caused by different configuration values of the TCP receive buffer
size, i.e., net.ipv4.tcp_rmem. The default values for minimum, de-
fault, and maximum size of the TCP receive buffer are (4096, 87380,
1887552) in version 4.4, but are (4096, 131072, 1772832) in version
5.4, as a result of an increasing demand in throughput.

5.1.3 Case Studies. In this section, we choose three of the newly
discovered discrepancies from our analysis, and describe how to
exploit them to evade NIDS. Different from evasion strategies in
previous works, we creatively re-use the four-tuple of a connection
to exploit some of these discrepancies.

RST rightmost SACK (Discrepancy 7)was introduceds in 2016 [34],
as a performance optimization that allows a connection to be closed
by a RST promptly. When packet losses or out-of-order packets
occur, the rcv_nxt stays at the end of the previously received in-
order data. After RFC 5961, TCP only accepts a RST packet if its
sequence number is equal to rcv_nxt. So in this case, if an RST is
sent after some lost or re-ordered segment, the server’s rcv_nxt
doesn’t match the sequence number in the RST and the server will
respond with a challenge ACK. In a lossy situation, the challenge
ACK may be lost as well, and the connection will stay alive for a
while. Therefore, the newer versions accept a RST packet as long
as its sequence number matches the right edge of the right-most
SACK block previously received. One can exploit this discrepancy
via two possibilities: 1) if the server accepts such RST packets and
the NIDS rejects them, then we can send such a RST packet to tear
down the connection on the server, and then re-use the four-tuple

Table 2: Discrepancies found between different versions of Linux kernels (from v3.0 to v5.10)

No. Date Ver. Condition Old Behavior New Behavior
1 12/3/2011 3.3 SYN+FIN packet in LISTEN state Initiate a connection Discard
2 7/17/2012 3.6 In-window SYN packet in ESTABLISHED state Reset the connection Discard and send CACK
3 7/17/2012 3.6 In-window RST packet and SEQ number ≠ rcv_nxt Reset the connection Discard and send CACK
4 12/22/2012 3.8 Packets with too old ACK number Accept Discard and send CACK
5 12/26/2012 3.8 Data packet without ACK flag Accept the payload Reject the payload
6 6/13/2013 3.11 Initial receive window when receiving SYN packet 14600 29200
7 6/8/2016 4.8 RST packet with SEQ = end of rightmost SACK block (SACK enabled) Discard and send CACK Reset the connection
8 1/17/2017 4.11 RST packet with SEQ = rcv_nxt - 1 in closing states Discard Enter CLOSE state
9 5/25/2017 4.13 Data packets in window with old ACK in closing states Enter CLOSE state Discard and send CACK

Discrepancies 6, 7, 8, 9 are previously unknown and newly discovered by our system.

to build a new connection with a different initial sequence number
(ISN), which will not be tracked by the NIDS; 2) if the NIDS accepts
such RST packets and the server rejects them, then we can simply
craft such a RST packet to tear down the connection on the NIDS.

RST after FIN (Discrepancy 8) is an optimization to handle com-
patibility issues with Mac OSX [33]. In Mac OSX, when some ap-
plications are abruptly terminated, a RST packet is sent after a FIN
packet with the same sequence number as the FIN packet. When
a Linux server receives the FIN packet, it advances the rcv_nxt by
one; this causes the following RST packet to be rejected because
of an out-of-window sequence number, and a challenge ACK to be
sent. The MAC OSX client may not reply with any further packets,
and the connection on the Linux server will be left in a closing
state (e.g., CLOSE_WAIT). To prevent connections from staying in
closing states in such cases, the newer versions of the Linux kernel
also accepts RST packets with a sequence number equal to rcv_nxt
- 1, when in a closing state. One can exploit this discrepancy via
two possibilities: 1) if the server accepts such RST packets and the
NIDS does not, then we can send such a RST to tear down the
connection on the server, and then re-use the four-tuple to build
a new connection; because the NIDS has not torn down the old
connection, it will not be able to track the new connection; 2) if the
NIDS accepts such RST packets and the server does not, then we
can send such a RST to tear down the connection on the NIDS, and
then re-use the four-tuple to send a SYN packet which will create a
half-open connection on the NIDS; after that, we send a legitimate
RST packet to tear down the connection on the server, and then
re-use the four-tuple to create a new connection with a different
ISN; because the NIDS already has a half-open connection, it will
miss the new connection.

Data in closing states (Discrepancy 9) will reset the connection in
older versions of the Linux kernel because of a buggy implementa-
tion [14]. In older versions, when in one of the closing states (e.g.,
CLOSE_WAIT, CLOSING, LAST_ACK), a data packet with stale
sequence and acknowledgment numbers but partial-in-window
data will cause the connection to be reset. Although the acknowl-
edgment number is checked, the result is not used, and the packet
is not discarded immediately but processed further. In newer ver-
sions, this bug was fixed, and such data packets will be discarded
and trigger a challenge ACK or duplicate ACK. In order to exploit
this discrepancy, there are two possibilities: 1) if the server accepts
such data packets and the NIDS does not, then we can send such a
data packet to reset the connection on the server, and then re-use

the four-tuple to build a new connection; assuming the NIDS has
not torn down the old connection, the new connection will not
be tracked by the NIDS; 2) if the NIDS accepts such data packets
and the server does not, then we can send such a data packet to
reset the connection on the NIDS, and then send a SYN packet with
the same four-tuple to create a new half-open connection on the
NIDS; after that, we send a legitimate RST packet to tear down the
connection on the server, and then re-use the four-tuple to create a
new connection with a different ISN; the new connection will not
be tracked by the NIDS.

5.2 Themis Online Evaluations

In order to understand the effectiveness and efficiency of a NIDS
empowered with Themis, we conduct two evaluations. Specifically
we assess its robustness against evasion strategies and overhead
performance in runtime, and compare our results with a state-of-
the-art defense (very recent) [43] against such attacks; this recent
approach is based on Deep Learning (DL) models and has disclosed
its pipeline implementation and dataset [18].

5.2.1 NIDS Implementation. Asmentioned earlier, our NIDS should
behave in line with real TCP implementations in Linux, instead
of over-simplified implementations as in today’s NIDS. However,
for ease of implementation, we chose to develop our NIDS on top
of Zeek (formerly Bro) [28], one of the most popular open-source
general-purpose NIDS in the market. First, we have to realign its
behaviors to the common behaviors of the Linux versions we sup-
port; Second, we implement the different behaviors regarding each
of the discrepancies we discovered; Third, we implement the logics
of connection state forking and ambiguity detection.

Overall, we extend Zeek version 4.0 with only 1970 lines of C++
code to handle 8 of the discovered discrepancies listed in Table 2 1.
Note that realigning Zeek to a Linux implementation is relatively
straightforward and introduces negligible overhead.Hereon, we
refer to the realigned version of Zeek as ambiguity-agonistic which
is the baseline in our overhead evaluation, to be distinguished from
Themis which is ambiguity-aware. We open source our implemen-
tation and associated datasets on Github2 for reproducibility and
future extensions.

1Discrepancy #6 is excluded because the ambiguity can be easily eliminated by looking
at the advertised window size in the server’s response packet.
2https://github.com/seclab-ucr/Themis.

https://github.com/seclab-ucr/Themis

Table 3: Breakdown of ambiguities present in the 8-day MAWI dataset used in evaluations (#6 is excluded as discussed in §5.2.1)

Ambiguity No.
(from Table 2) Total No Ambiguity 1 2 3 4 5 7 8 9

Count (connections) 72,453,189 72,383,094 5 0 31,149 4,723 3 20 34,343 0
Ratio 100% 99.903% 0.000007% 0% 0.043% 0.0065% 0.000004% 0.00002% 0.047% 0%

5.2.2 Effectiveness. First, we evalute the effectiveness of Themis in
defending against evasion attacks. Over the past years, there are
a number of evasion strategies proposed [4, 22, 25, 30, 40, 41]. To
be comprehensive, we thoroughly analyze all attacks presented
in these works and picked strategies that are related to TCP. We
summarize and implement 34 different strategies after merging
redundant ones; these also include the new strategies discovered
by Themis. A detailed list of all implemented strategies can be
found in the Appendix. We even design composite strategies that
leverage multiple discrepancies in a single connection. Note these
strategies fully cover the evaluated attacks in [43], and thus, we are
able to conduct an apples-to-apples comparison. Our robust NIDS
can detect these attacks with a success rate of 100% (i.e., malicious
payloads that are veiled by evasion attacks, can elude the ambiguity-
agnostic Zeek but not our robust version). In comparison, [43]
reports an Area Under the Receiver Operating Characteristic Curve
(AUC-ROC) of 0.963 in detecting state-of-the-art NIDS evasion
attacks, meaning it still produces a considerably large number of
false positives as well as negatives.

5.2.3 Operational Runtime Overhead. In addition, we evaluate the
overheads incurred due to Themis at runtime, compared to the
ambiguity-agnostic Zeek when no malicious evasion attacks are
present. Note that even without malicious evasion attacks, there can
be a number of ambiguous packets observable in natural network
traffic. This is because in a wild Internet environment, various
implementations may exist and the packets exchanged across them
may satisfy the conditions associated with ambiguities. In such
cases, these ambiguities are not actively exploited for malicious
purposes, but can still cause overhead since Themis would still
fork states on such bases. We refer to this overhead as operational
runtime overhead associated with Themis when it is deployed in
real network environments.

The key to accurately estimating the operational overhead is
finding representative network traffic captures to evaluate Themis.
For this, we use the MAWI Traffic Archive [17] as the base dataset.
It provides PCAP dumps from a backbone network located in Japan,
and is thus, considered sufficiently large and representative.We pick
7-day recent traces captured fromApril 25 toMay 1, 2021, in additon
to the trace on April 7, 2020 (i.e., the dataset used in [43]), and filter
out any non-TCP connections to forge a test set of 72,453,189 TCP
connections. Table 3 shows the statistics of different ambiguities
present in the trace. Overall, only a very small fraction of natural /
benign traffic contain packets that cause ambiguities. Specifically,
there are only 69,994 (0.097% of the connections) connections with
exactly 1 ambiguity, 131 with 2 different ambiguities, 1 with 3 differ-
ent ambiguities, and no connections with more than 3 ambiguities.
We use the same machine with an AMD EPYC 7542 Processor as
in §5.1, but only use a single core in order to be comparable with

Number of ambiguities in a connection

P
ro

ce
ss

in
g

tim
e

(r
at

io
)

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Traditional Zeek Themis

Figure 8: Overhead growth with the number of ambiguities

[43]. We record the average memory usage to be 1∼2 GB, which is
on par with (if not less than) that in [43]. As for the resulting opera-
tional overhead, we find that compared to ambiguity-agnostic Zeek,
our robust version incurs only about 1.07% additional processing
time, indicating only negligible levels of operational cost. The aver-
age processing time is 69400.5 packets per second. In comparison,
the state-of-the-art defense from [43], can only process less than
2200 packets per second (due to the computational cost of the deep
learning model), which is more than 30 times slower than Themis.

5.2.4 Overhead Growth with Multiple Ambiguities. In addition to
the operational overhead incurred on benign traffic traces, we also
evaluate the runtime overhead that Themis imposes in the presence
of multiple different ambiguities in a single connection. Although,
natural traffic rarely includes more than one ambiguity in the same
connection (only ∼0.0002% in our 8-day MAWI dataset), we are
interested in knowing how would the overhead of Themis grow
with repsect to the number of ambiguities, for understanding how
vunlunerable Themis is agaisnt Denial-of-Service attacks (i.e., de-
liberately injected multiple ambiguities for slowing down NIDS
processing). To maliciously induce extremely high overhead, an
attacker could aim to trigger as many state forkings as possible
for each connection. Because each packet will be processed by all
forked states, the overhead is proportional to the number of forked
states. Furthermore, the attacker may want to use long-lived con-
nections, because after reaching the maximum number of forked
states, every packet sent by the attacker will cause significant extra
overhead on the NIDS. Based on this reasoning, we manually inject
ambiguities into normal connections, and measure the processing
time growth of Themis along with number of ambiguities. The
results are shown in Figure 8, and suggest that the overhead growth
is in principle linearly proportional to the number of ambiguities.
Note that the overhead stops growing after 6 ambiguities. This is
because some ambiguities, specifically 7, 8, and 9, cannot coexist
in the same connection due to version coherence and connection

being reset. For example, versions before ambiguity 7 all conform
with the old behavior for ambiguity 7, 8 and 9, and for versions after
ambiguity 7, the connection will be reset after seeing ambiguity 7.
In addition, based on the results in §5.2.3, it’s rare to encounter a
connection with more than 3 ambiguities, therefore, we could safely
mark a connection as suspicious if it has more than 3 ambiguities.

6 DISCUSSION AND LIMITATIONS

Completeness and Soundness of Our Symbolic Modeling. By
performing an exhaustive symbolic execution, we achieve a com-
plete coverage of feasible execution paths by finishing all execution
states. However, there still could be potential cases missing. First,
we use the default configuration of Linux (e.g, kernel compilation
configuration, Linux sysctl settings), and thus, cannot guarantee
all TCP logic is covered (e.g, some uncommon features like TCP
Fast Open may not be enabled by default). Second, we eliminate
some non-determinism in TCP (e.g., we freeze the CPU clock), and
this could also cause incomplete coverage because we only explore
one possibility instead of all. Further, some TCP logics need to be
triggered by user space applications, which can set TCP socket op-
tions, or call certain system calls like connect(), send(), recv(),
etc. In our experiments, we use a simple server-side application to
passively listen on a socket and receive packets, since our target is
to infiltrate data into a server’s receive buffer. We use the default
TCP socket options, which are also used by other network appli-
cations, such as the Apache HTTP server. Our model can already
cover the major logic of TCP, and we believe that our setting is
representative but acknowledge that it still may not be complete.

In addition, we note that there is a data overlapping strategy [40]
missed by Themis. Basically, an attacker can craft two data packets
with overlapping portions in payloads and result in ambiguities
regarding which copy will be accepted. Most of the OSes, such as
Linux, favor the last packet, while Windows favors the first packet.
Since Themis currently analyzes only Linux implementations, it
cannot discover this particular discrepancy. Nevertheless, it can
still be easily incorporated into the ambiguity-aware NIDS.

Extent of Human Effort in Symbolic Model Extraction and

Comparison. When labeling merge ranges for state merging, we
first automatically generate a list of candidate merge ranges with
symbolic execution and control flow analysis; we then go over
them manually to decide whether to label them as merge ranges
or not, guided by our TCP domain expertise and using certain
heuristics. In addition, we also need to label the program points
related to critical states. It takes on average, one day for someone
with domain expertise to do the above labeling for a Linux kernel
version. After symbolic model extraction, we employ a constraint
solver to automatically compare two models and find concrete
examples for any discrepancies, which does not require any human
effort. Once a discrepancy is found, we need to manually analyze
the execution traces and summarize the discrepancy. Therefore,
the number of discrepancies will dictate the manual efforts for
discrepancy analysis. In the evaluation of the offline phase, it takes
us around 10 days in total to finish analyzing 5 Linux kernel versions
and find all the discrepancies across these versions.

Assumptions on Version Coherence. As discussed in §4.2,
version coherence is an optimization to reduce the number of forked

states in an NFA-based NIDS. Its aim is to build a profile for each
version range in which all the versions have the same TCP behav-
iors. It is an optional feature because as discussed in §5.2.3, it is
very rare that a connection has more than 3 ambiguities; thus, we
can safely mark a connection as suspicious when we see such a
connection, without doing further state forking. When building
profiles for the Linux TCP stack, we choose to compare adjacent
versions rather than all pairs of versions. The underlying assump-
tion is that we work on a single implementation with an ordered
version history, i.e., we can know which version precedes another.
When comparing versions from different OSes, we will have to do
a full pair-wise comparison between all the versions.

Extending to Other Operating Systems. Although Linux en-
joys a major market share among the server OSes, there are also
other OSes such as Windows and FreeBSD. Themis uses S2E [13]
as the symbolic execution engine to extract the TCP model from an
OS. S2E works on the binary level and runs the entire OS in QEMU,
and does not require source code. So in principle, we could extend
Themis to all other OSes, including those that are closed-source
(e.g., Windows). However, we will need to label the critical states
and merge ranges to scale up symbolic execution. Without access
to source code, this process can be more time-consuming.

Extensions to Model Client Behaviors. In this work, we fo-
cus on modeling servers’ behaviors. Although the TCP stack of the
client and the server are the same, we do not explore TCP states
exclusively related to the client, e.g., TCP_SYN_SENT. Our mo-
tivation stems from the fact that NIDS are typically deployed as
safeguards against servers in corporations as opposed to individual
clients which could be anywhere in the world. In order to model the
clients’ behaviors, we need to run a client application and actively
initiate connections and send packets. Conceivably, Themis can
protect a client from being exploited by malicious content sent from
a server. However, we leave this possibility to future work.

Ethical Considerations.We acknowledge that improving the
robustness of NIDS has an unintended consequence of improving
the robustness of censorship firewalls too, as they both need to
keep track of TCP connection states and reassemble TCP data
packets. Similar to other technologies such as encryption that can
be used for both good (e.g., protecting our privacy) and bad purposes
(e.g., plotting a terrorist attack), we believe the value in preventing
malicious attacks generally outweighs the collateral damage of
disrupting censorship circumvention.

Limitations. Since Themis-enabled NIDS is designed to address
TCP-layer ambiguities, it may fall short when attackers leverage am-
biguities from other layers, e.g., the IP-layer TTL trick (constructing
packets with smaller TTL values that can reach the NIDS but not
the remote server). In this case, one could adopt a defense-in-depth
strategy and deploy a traffic normalizer [19], which can defend
against the TTL trick by increasing the TTL value in a packet.

7 RELATEDWORK

Finding Discrepancies between Implementations. Discrepan-
cies between implementations are usually good indicators of im-
plementation bugs. They can also be used to fingerprint implemen-
tations or evade detection (as considered here) leveraging semantic

gaps [21, 41]. There is work on finding discrepancies between differ-
ent implementations of the same target; examples include network
protocols [7, 12, 41], parsers [9, 21, 29], libraries [38, 39], etc. A
common way to find discrepancies is differential testing combined
with random input generation or fuzzing. Brubaker et al.[6], gen-
erate synthetic X.509 certificates by randomly mutating fields in
a real certification, and then feed them to different certificate vali-
dation programs in order to find bugs from discrepancies. Jana et
al. [21] also employ differential fuzzing but against malware de-
tectors. They discover novel attacks that exploit the discrepancies
between parsers of the malware detectors and actual applications,
and can evade the detection. This approach treats the target as
a black-box and does not require any internal information, and
is therefore easy to apply. However, the coverage is usually low
because it can only explore the search space near the seed input.

Some other works use static analysis to extract semantic in-
formation from binary or source code. Min et al. [27], target the
Linux file systems and extract high-level semantic information
from the source code; they then do a statistical comparison to dis-
cover deviant behaviors. Srivastava et al. [38] conduct flow- and
context-sensitive interprocedual static analysis on Java API im-
plementations, and produce context-sensitive security policies for
every API entry point, and then compare the policies to find dis-
crepancies. Static analysis can leverage semantic information and
is scalable, but also suffers from false positives.

Symbolic execution is also used to extract a more accurate se-
mantic representation from the source code or binary. Brumley et
al. [7], extract symbolic formulas by replaying captured network
traces against different implementations, and then compare the
symbolic formulas with a constraint solver. But due to limited cov-
erage, they suffer from false positives. Similarly, Chau et al [11]
feed symbolic X.509 certificates to certificate validation implemen-
tations, and extract constraints relating to certificate “accept” and
“reject” paths. They then use a constraint solver to find discrepan-
cies. Wang et al. [41] combine symbolic execution with black-box
differential testing, and use symbolic execution as a guide to group
equivalence inputs by execution paths and therefore, largely reduce
the search space. However, all these works only achieve partial
coverage and compare indiviual execution paths to discover dis-
crepancies opportunistically. Our approach aims to systematically
discover all discrepancies between two implementations, as it re-
lates to NIDS evasion. To achieve this goal, we need to run symbolic
execution exhaustively to traverse all feasible execution paths in
each of our target implementations, and then calculate the weakest
preconditions based on the entire program.

Defenses againstNIDSEvasionAttacks.Zhu et al.[43] present
a deep learning based solution for detecting and localizing DPI
evasion attacks by learning the so-called packet context (i.e., inter-
relationships of header fields within and across packets) from be-
nign traffic traces. It then uses the learnt model on unseen network
connections to spot anomalies in terms of deviations from the be-
nign context distribution. As discussed in §5, compared to Themis,
[43] falls behind in terms of both the detection accuracy (0.963 vs.
1.00 in AUC-ROC) and runtime overhead (2162.2 vs. 69400.5 pack-
ets processed per second under the same single-core CPU setup).
This is because any DL-based defense, unlike Themis, always will

generate some incorrect classifications and require relatively heavy
computations in their inference phase.

Traffic normalization [19] takes a different approach in defend-
ing NIDS against evasion attacks. A normalizer sits in the path
and patches up the packets passing through to eliminate potential
ambiguities, before they are seen by the NIDS. It relies on a manu-
ally curated list of potential ambiguities in basic network protocols
such as TCP, UDP, IP, and ICMP. However, unfortunately, it cannot
safely remove all possible ambiguities in the absence of detailed
knowledge about the various implementations on the endhosts, and
could even disrupt the communications since it alters the traffic.

ActiveMapping [35] builds a profile for each endhost and actively
maintains a profile database. This is apt for a small network with
relatively stable members, and not for a large scale network with
dynamic members. Usually, it takes time to build profiles, and they
need to be updated often. Moreover, the NIDS needs to be agnostic
to the details and configurations of software on the endhosts.

Paxson [28] proposes to use bifurcating analysis to explore all
different possibilities of packet reassembly. However, without the
knowledge of ambiguities, it will lead to exponential growth in
state forking overhead in practice.

8 CONCLUSIONS

In this paper, we aim to defend against attacks that seek to evade net-
work intrusion detection systems, by exploiting the discrepancies
between its TCP implementation and that at a targeted end server.
These discrepancies are commonplace, and, thus these threats are
very real. We design a novel lightweight system Themis which is
extremely effective in defending against such attacks. It contains
an offline phase, where it identifies and models discrepancies in
TCP implementations across OS versions using symbolic execu-
tion. The models are then employed at runtime, and by applying a
non-deterministic automaton the proper implementation versions
are forked to handle packets correctly and block evasion attempts.
Themis is extremely effective and is able to block all known evasion
attempts to date with negligible additional overhead on a NIDS. In
developing Themis we also discover multiple brand new discrepan-
cies, that are exploitable as it relates to current NIDS.

ACKNOWLEDGMENT

Wewould like to thank the anonymous reviewers and our shepherd,
Soo-Jin Moon, for their insightful feedback that helped improve
the quality of this paper. This research was partially sponsored by
the U.S. Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA).
The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation here on. This research was also partially
sponsored by NSF grant No. 1652954.

REFERENCES

[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

[2] Kevin Bock, Yair Fax, Kyle Reese, Jasraj Singh, and Dave Levin. 2020. Detecting
and Evading Censorship-in-Depth: A Case Study of Iran’s Protocol Whitelister. In
10th USENIXWorkshop on Free and Open Communications on the Internet (FOCI 20).
USENIX Association. https://www.usenix.org/conference/foci20/presentation/
bock

[3] Kevin Bock, George Hughey, Louis-Henri Merino, Tania Arya, Daniel Liscinsky,
Regina Pogosian, and Dave Levin. 2020. Come as You Are: Helping Unmodified
Clients Bypass Censorship with Server-Side Evasion. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication
(Virtual Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 586–598. https://doi.org/10.1145/3387514.3405889

[4] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019. Geneva: Evolving
Censorship Evasion Strategies. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 2199–2214.
https://doi.org/10.1145/3319535.3363189

[5] Robert S Boyer, Bernard Elspas, and Karl N Levitt. 1975. SELECT—a formal
system for testing and debugging programs by symbolic execution. ACM SigPlan
Notices 10, 6 (1975), 234–245.

[6] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 114–129.

[7] David Brumley, Juan Caballero, Zhenkai Liang, and James Newsome. 2007.
Towards Automatic Discovery of Deviations in Binary Implementations
with Applications to Error Detection and Fingerprint Generation. In 16th
USENIX Security Symposium (USENIX Security 07). USENIX Association, Boston,
MA. https://www.usenix.org/conference/16th-usenix-security-symposium/
towards-automatic-discovery-deviations-binary

[8] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Commun. ACM 56, 2 (Feb. 2013), 82–90. https://doi.org/10.
1145/2408776.2408795

[9] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht Bhaskar, and Mu
Zhang. 2016. Extract Me If You Can: Abusing PDF Parsers in Malware Detectors..
In NDSS.

[10] Sze Yiu Chau, Omar Chowdhury, Md. Endadul Hoque, Huangyi Ge, Aniket Kate,
Cristina Nita-Rotaru, and Ninghui Li. 2017. SymCerts: Practical Symbolic Execu-
tion for Exposing Noncompliance in X.509 Certificate Validation Implementations.
In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017. IEEE Computer Society, 503–520. https://doi.org/10.1109/SP.2017.40

[11] Sze Yiu Chau, Moosa Yahyazadeh, Omar Chowdhury, Aniket Kate, and Ninghui
Li. 2019. Analyzing Semantic Correctness with Symbolic Execution: A Case
Study on PKCS# 1 v1. 5 Signature Verification.. In NDSS.

[12] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern Pax-
son. 2016. Host of Troubles: Multiple Host Ambiguities in HTTP Implementations.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 1516–1527. https://doi.org/10.1145/2976749.2978394

[13] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). ACM, New York, NY, USA, 265–278. https://doi.org/10.1145/1950365.
1950396

[14] Data in closing states [n.d.]. tcp: better validation of received ack se-
quences. Retrieved April 17, 2021 from https://github.com/torvalds/linux/commit/
d0e1a1b5a833b625c93d3d49847609350ebd79db

[15] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall. I–XVII,
1–217 pages.

[16] RehamTaher El-Maghraby, NadaMostafa Abd Elazim, and AymanMBahaa-Eldin.
2017. A survey on deep packet inspection. In 2017 12th International Conference
on Computer Engineering and Systems (ICCES). IEEE, 188–197.

[17] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010.
Mawilab: combining diverse anomaly detectors for automated anomaly labeling
and performance benchmarking. In Proceedings of the 6th International COnference.
1–12.

[18] Inc. GitHub. 2020. Source Code and Dataset for CLAP. https://github.com/seclab-
ucr/CLAP.

[19] Mark Handley, Vern Paxson, and Christian Kreibich. 2001. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-end Protocol Semantics.
In Proceedings of the 10th Conference on USENIX Security Symposium - Volume
10 (Washington, D.C.) (SSYM’01). USENIX Association, Berkeley, CA, USA, 9–9.

http://dl.acm.org/citation.cfm?id=1267612.1267621
[20] Trevor Hansen, Peter Schachte, and Harald Søndergaard. 2009. State Joining

and Splitting for the Symbolic Execution of Binaries. Springer-Verlag, Berlin,
Heidelberg, 76–92. https://doi.org/10.1007/978-3-642-04694-0_6

[21] Suman Jana and Vitaly Shmatikov. 2012. Abusing File Processing in Malware
Detectors for Fun and Profit. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy (SP ’12). IEEE Computer Society, USA, 80–94. https://doi.org/10.
1109/SP.2012.15

[22] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. 2013.
Towards Illuminating a Censorship Monitor’s Model to Facilitate Evasion. In
Presented as part of the 3rd USENIX Workshop on Free and Open Communications
on the Internet. USENIX, Washington, D.C. https://www.usenix.org/conference/
foci13/workshop-program/presentation/Khattak

[23] James C. King. 1975. A New Approach to Program Testing. In Proceedings
of the International Conference on Reliable Software (Los Angeles, California).
Association for Computing Machinery, New York, NY, USA, 228–233. https:
//doi.org/10.1145/800027.808444

[24] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient State Merging in Symbolic Execution. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (Bei-
jing, China) (PLDI ’12). Association for Computing Machinery, New York, NY,
USA, 193–204. https://doi.org/10.1145/2254064.2254088

[25] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki,
David Choffnes, Phillipa Gill, and Alan Mislove. 2017. Lib·erate, (N): A Library for
Exposing (Traffic-classification) Rules and Avoiding Them Efficiently. In Proceed-
ings of the 2017 Internet Measurement Conference (London, United Kingdom) (IMC
’17). ACM, New York, NY, USA, 128–141. https://doi.org/10.1145/3131365.3131376

[26] Rupak Majumdar and Koushik Sen. 2007. Hybrid concolic testing. In 29th Inter-
national Conference on Software Engineering (ICSE’07). IEEE, 416–426.

[27] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-Checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (Monterey, California) (SOSP ’15). Association for Computing Machinery,
New York, NY, USA, 361–377. https://doi.org/10.1145/2815400.2815422

[28] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-time.
Comput. Netw. 31, 23-24 (Dec. 1999), 2435–2463. https://doi.org/10.1016/S1389-
1286(99)00112-7

[29] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D. Keromytis, and
Suman Jana. 2017. NEZHA: Efficient Domain-Independent Differential Testing.
In 2017 IEEE Symposium on Security and Privacy (SP). 615–632. https://doi.org/
10.1109/SP.2017.27

[30] Thomas H Ptacek and Timothy N Newsham. 1998. Insertion, evasion, and de-
nial of service: Eluding network intrusion detection. Technical Report. SECURE
NETWORKS INC CALGARY ALBERTA.

[31] Anantha Ramaiah, R Stewart, and Mitesh Dalal. 2010. Improving TCP’s Robustness
to Blind In-Window Attacks. RFC 5961. RFC Editor. 1–19 pages. https://www.rfc-
editor.org/rfc/rfc5961.txt

[32] Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: A Differential
Fuzzing Framework to Detect DPI Elusion Strategies for QUIC. In Annual Com-
puter Security Applications Conference (Austin, USA) (ACSAC ’20). Association for
Computing Machinery, New York, NY, USA, 332–344. https://doi.org/10.1145/
3427228.3427662

[33] RST after FIN [n.d.]. tcp: accept RST for rcv_nxt - 1 after receiving a
FIN. Retrieved April 17, 2021 from https://github.com/torvalds/linux/commit/
0e40f4c9593ba2c7c30150ed669da97bd581c0cd

[34] RST rightmost SACK [n.d.]. tcp: accept RST if SEQ matches right edge of right-most
SACK block. Retrieved April 17, 2021 from https://github.com/torvalds/linux/
commit/e00431bc93bb48c650273be4a00007b2a392d32a

[35] U. Shankar and V. Paxson. 2003. Active mapping: resisting NIDS evasion without
altering traffic. In 2003 Symposium on Security and Privacy, 2003. 44–61. https:
//doi.org/10.1109/SECPRI.2003.1199327

[36] Michael Sipser. 1996. Introduction to the Theory of Computation (1st ed.). Interna-
tional Thomson Publishing, 47–48.

[37] SMT-LIB [n.d.]. SMT-LIB The Satisfiability Modulo Theories Library. Retrieved
April 20, 2021 from http://smtlib.cs.uiowa.edu

[38] Varun Srivastava, Michael D Bond, Kathryn S McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: Detecting security holes using multiple API
implementations. ACM SIGPLAN Notices 46, 6 (2011), 343–354.

[39] Jackson Vanover, Xuan Deng, and Cindy Rubio-González. 2020. Discovering
Discrepancies in Numerical Libraries. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 488–501.
https://doi.org/10.1145/3395363.3397380

[40] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krish-
namurthy. 2017. Your State is Not Mine: A Closer Look at Evading Stateful
Internet Censorship. In Proceedings of the 2017 Internet Measurement Confer-
ence (London, United Kingdom) (IMC ’17). ACM, New York, NY, USA, 114–127.
https://doi.org/10.1145/3131365.3131374

https://doi.org/10.1145/3182657
https://www.usenix.org/conference/foci20/presentation/bock
https://www.usenix.org/conference/foci20/presentation/bock
https://doi.org/10.1145/3387514.3405889
https://doi.org/10.1145/3319535.3363189
https://www.usenix.org/conference/16th-usenix-security-symposium/towards-automatic-discovery-deviations-binary
https://www.usenix.org/conference/16th-usenix-security-symposium/towards-automatic-discovery-deviations-binary
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/SP.2017.40
https://doi.org/10.1145/2976749.2978394
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://github.com/torvalds/linux/commit/d0e1a1b5a833b625c93d3d49847609350ebd79db
https://github.com/torvalds/linux/commit/d0e1a1b5a833b625c93d3d49847609350ebd79db
https://github.com/seclab-ucr/CLAP
https://github.com/seclab-ucr/CLAP
http://dl.acm.org/citation.cfm?id=1267612.1267621
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1109/SP.2012.15
https://doi.org/10.1109/SP.2012.15
https://www.usenix.org/conference/foci13/workshop-program/presentation/Khattak
https://www.usenix.org/conference/foci13/workshop-program/presentation/Khattak
https://doi.org/10.1145/800027.808444
https://doi.org/10.1145/800027.808444
https://doi.org/10.1145/2254064.2254088
https://doi.org/10.1145/3131365.3131376
https://doi.org/10.1145/2815400.2815422
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1016/S1389-1286(99)00112-7
https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/SP.2017.27
https://www.rfc-editor.org/rfc/rfc5961.txt
https://www.rfc-editor.org/rfc/rfc5961.txt
https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1145/3427228.3427662
https://github.com/torvalds/linux/commit/0e40f4c9593ba2c7c30150ed669da97bd581c0cd
https://github.com/torvalds/linux/commit/0e40f4c9593ba2c7c30150ed669da97bd581c0cd
https://github.com/torvalds/linux/commit/e00431bc93bb48c650273be4a00007b2a392d32a
https://github.com/torvalds/linux/commit/e00431bc93bb48c650273be4a00007b2a392d32a
https://doi.org/10.1109/SECPRI.2003.1199327
https://doi.org/10.1109/SECPRI.2003.1199327
http://smtlib.cs.uiowa.edu
https://doi.org/10.1145/3395363.3397380
https://doi.org/10.1145/3131365.3131374

[41] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian, Chengyu Song, Srikanth V
Krishnamurthy, Kevin S Chan, and TracyDBraun. 2020. SymTCP: eluding stateful
deep packet inspection with automated discrepancy discovery. In Network and
Distributed System Security Symposium (NDSS).

[42] Z3Prover/z3 [n.d.]. The Z3 Theorem Prover. Retrieved May 4, 2019 from https:
//github.com/Z3Prover/z3

[43] Shitong Zhu, Shasha Li, Zhongjie Wang, Xun Chen, Zhiyun Qian, Srikanth V. Kr-
ishnamurthy, Kevin S. Chan, and Ananthram Swami. 2020. You Do (Not) Belong
Here: Detecting DPI Evasion Attacks with Context Learning. In Proceedings of
the 16th International Conference on Emerging Networking EXperiments and Tech-
nologies (Barcelona, Spain) (CoNEXT ’20). Association for Computing Machinery,
New York, NY, USA, 183–197. https://doi.org/10.1145/3386367.3431311

A LIST OF IMPLEMENTED EVASION

STRATEGIES FOR EFFECTIVENESS

EVALUATION OF THEMIS

We have implemented all the TCP-related evasion strategies pre-
sented in previous works [4, 22, 25, 30, 40, 41], after merging re-
dundant strategies. There are in total 34 evasion stategies as listed
in Table 4. We apply those stategies to a HTTP connection, in
which the client sends a malicious request with a bad keyword.
Themis can successfully detect the bad keyword in all the attacks.

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://doi.org/10.1145/3386367.3431311

Table 4: List of implemented evasion strategies (bold strategies are newly discovered in this paper)

No. Strategy Description

1 Bad checksum data In ESTABLISHED state, send junk data with bad checksum, and then send the request
2 Bad checksum RST In ESTABLISHED state, send partial request, then send a RST packet with bad checksum, and then send the

remaining request
3 No ACK flag data In ESTABLISHED state, send junk data without ACK flag, and then send the request
4 No ACK flag FIN In ESTABLISHED state, send partial request, then send a FIN packet without ACK flag, and then send the

remaining request
5 SYN with data In LISTEN state, send a SYN packet with payload, then send the request
6 Bad ACK number data In ESTABLISHED state, send junk data with out-of-window ACK number, and then send the request
7 Bad ACK number RST/ACK In ESTABLISHED state, send partial request, then send a RST/ACK packet with out-of-window ACK number,

and then send the remaining request
8 Small data offset header In ESTABLISHED state, send junk data with TCP data offset <5, and then send the request
9 Large data offset header In ESTABLISHED state, send junk data with TCP data offset >actual packet size / 4, and then send the request
10 Bad MD5 data In ESTABLISHED state, send junk data with TCP MD5 option, and then send the request
11 Bad MD5 RST In ESTABLISHED state, send partial request, then send a RST packet with TCP MD5 option, and then send the

remaining request
12 Bad TCP timestamp data In ESTABLISHED state, send junk data with bad TCP timestamp, and then send the request
13 Bad TCP timestamp RST In ESTABLISHED state, send partial request, then send a RST packet with bad TCP timestamp, and then send the

remaining request
14 Bad SEQ number data In ESTABLISHED state, send junk data with out-of-window SEQ number, and then send the request
15 Bad SEQ number FIN In ESTABLISHED state, send partial request, then send a FIN packet with out-of-window SEQ number, and then

send the remaining request
16 Bad SEQ number RST In ESTABLISHED state, send partial request, then send a RST packet with out-of-window SEQ number, and then

send the remaining request
17 Invalid TCP flags In ESTABLISHED state, send junk data with flags FRAPUN set, and then send the request
18 Multiple SYNs In SYN_RECV or ESTABLISHED state, send a SYN packet with out-of-window SEQ num, and then send the

request
19 Big gap in data In ESTABLISHED state, send junk data with SEQ = rcv_nxt + max_gap_size (16384), and then send the request
20 SEQ number before ISN In ESTABLISHED state, send the request with SEQ <ISN (initial sequence number) but partial-in-window data
21 In-window SYN In ESTABLISHED state, send partial request, then send a SYN packet with SEQ >rcv_nxt but in window, and

then send the remaining request
22 In-window FIN In ESTABLISHED state, send partial request, then send a FIN packet with SEQ >rcv_nxt but in window, and then

send the remaining request
23 In-window RST In ESTABLISHED state, send partial request, then send a RST packet with SEQ >rcv_nxt but in window, and then

send the remaining request
24 Partial in-window RST In ESTABLISHED state, send partial request, then send a RST packet with SEQ <rcv_nxt but partial data in

window, and then send the remaining request
25 Urgent data In ESTABLISHED state, send the request with urgent pointer and URG flag set, also need to insert one byte

urgent data into the payload
26 Time gap In ESTABLISHED state, send partial request with timestamp, and then send the remaining request with timestamp

= last_timestamp + 0x80000000
27 Small segments In ESTABLISHED state, send the request in small segments (size = 4)
28 TCB Turnaround In LISTEN state, send a SYN/ACK packet before sending the SYN packet, then establish the connection and send

the request
29 Muti-segmentation In ESTABLISHED state, send the request in segments, 1st segment size 8, 2nd segment size 4, and then send the

remaining request
30 Simple TCB Desynchronization In SYN_RECV state, send a SYN packet with junk payload, and then send the request
31 SYN+FIN In LISTEN state, send a SYN+FIN packet, then establish the connection with a different ISN and send the request
32 RST rightmost SACK SAckOK option in SYN packet. In ESTABLISHED state, send partial request with a SEQ gap, then send a RST

packet with SEQ = SEQ end of last packet, and then send the remaining request
33 RST after FIN In ESTABLISHED state, send a FIN/ACK packet, then send a RST packet with SEQ = SEQ of the FIN packet, and

then reuse the 4-tuple to established a new connection and send the request
34 Data in closing states In ESTABLISHED state, send a FIN/ACK packet, then send junk data with SEQ <rcv_nxt but in-window data and

ACK <previous ACK, and then reuse the 4-tuple to establish a new connection and send the request

	Abstract
	1 Introduction
	2 Background
	2.1 NIDS Evasion Based on Traffic Manipulation
	2.2 Symbolic Execution and State Merging

	3 Offline Phase: Discovering TCP Implementation Discrepancies
	3.1 Symbolic Model Extraction
	3.2 Model Comparison
	3.3 Discrepancy Analysis
	3.4 Finding Discrepancies in Linux TCP Stack

	4 Online Phase: Ambiguity-Aware NIDS
	4.1 NFA-Based Model for NIDS
	4.2 Version Coherence

	5 Evaluation
	5.1 Symbolic-execution-based Discrepancy Discovery
	5.2 Themis Online Evaluations

	6 Discussion and Limitations
	7 Related Work
	8 Conclusions
	References
	A List of Implemented Evasion Strategies for Effectiveness Evaluation of Themis

