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Abstract—The popularity of reactive worms, whose 
attacking behavior inherits characteristics from both active 
worms and passive worms, has brought great threat to P2P 
networks in recent years. Most existing defense models only 
focus on the effects of P2P churn on reactive worm's 
propagation, but neglect the impact of user behaviors on the 
spread of worms. This paper proposes a defense model of 
reactive worms based on dynamic time with full 
consideration of various dynamic factors that restrict the 
propagation of reactive worms in real networks; then 
compares major distinctions of several key parameters in 
worms’ propagation between models based on mean-field 
theory and the presented dynamic-time-based one; and 
deduces the crucial periods of time within a particular 24-
hour day for defending against reactive worms’ attack. 
Eventually simulation experiment shows this defense model 
is feasible and effective. 
 
Index Terms—dynamic time, probability theory, reactive 
worm, defense model, mean-field theory 
 

I.  INTRODUCTION 

Based on distributed system and computer network, 
Peer-to-Peer (P2P) is currently the most popular 
networking technology for data sharing, instant 
messaging, enterprise collaboration, etc. However, 
current P2P networks are facing serious security threats 
since they show some facilities towards worm attack and 
propagation. With the emergence of P2P worms, they 
bring harm to P2P networks and even pose an underlying 
threat to Internet. 

P2P worms can be generally categorized into three 
groups: passive worms, reactive worms and active worms. 
Unlike passive worms that hide themselves in malicious 
files and trick users into downloading and executing them 

for propagation, active worms that automatically connect 
to potential targets by using topological information for 
propagation, reactive worms propagate themselves with 
legitimate network activities using security vulnerabilities 
on particular P2P nodes. This type of normal network 
connections can be initiated by a user or one reactive 
worm personating a legitimate user. If an infected node 
finds exploitable security vulnerabilities in a connection, 
it will pass a worm’s copy to the uninfected node. Then 
once the worm copy is executed by the uninfected node, 
it will be injected and the newly-infected node will 
continue infecting its neighborhood nodes. Since reactive 
worms can propagate through normal connections, they 
are relatively tough against detection or common 
firewalls. Characteristics above make the propagation of 
reactive worms in P2P networks speedy and conceal. 

The transmission mode of reactive worms can be 
generally divided into three categories due to different 
infection directions: source infection, target infection and 
mixed infection. Among these three, mixed infection 
reactive worms infect not only the source host (download 
port) but also the target host (upload port) in one 
connection, making it the most harmful one to P2P 
networks. This paper mainly lays emphasis on this kind 
of reactive worms. 

Most research into reactive worm defense at present is 
mostly based on the epidemic model. Early in 1926, 
McKendrick et al. first modeled the spread of biological 
viruses by the means of mathematics [1], then proposed 
the epidemic mathematical model. From then on, the 
epidemic model was widely introduced into the process 
of modeling on computer viruses and reached some truly 
remarkable achievements. Some representative ones of 
them are listed as follows: Kephart et al. first introduced 
the epidemic model into computer virus modeling process 
in the early 90's [2]. Yu et al. developed a P2P worm 
propagation model on the basis of simple epidemic model, 
and discussed the prevention strategy of P2P worms [3]; 
Sun et al. studied the propagation process of active P2P 
worms by a dynamic model [4], took both the entire 
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network’s status and each single node’s action into 
consideration; Li et al. presented a stochastic model of 
worm propagation on the basis of the epidemic model, 
analyzed the process of state transition of nodes by using 
the state space of a Markov chain [5]; Yang et al.  
proposed a new method to integrate the delivery 
predictability of ProPHET-Routing and verified their 
proposed OOPProPHET-Routing method was better than 
Epidemic-Routing method by NS2 network simulator 
[6]；Xie et al. built a new multi-agents risk assessment 
model based on attack graph(MRAMBAG) and had 
shown that the MRAMBAG was a more feasible and 
effective way for evaluate the network security risk [7]; 
Xing et al. analyzed the security threat to the virtual 
network and brought forward a security guarantee 
embedding algorithm for virtual network [8], the 
simulation results showed that the algorithm was 
effective; Wang et al. gave a simulation analysis to 
reactive worms [9], and simulated the defense process of 
reactive worms under Internet environment and P2P 
environment. Also, the keys to defense in these 
environment had been proposed. Qin  et al. and Feng et al. 
respectively modeled the propagation process and 
immune process of reactive worms on the basis of 
Kermack-Mckendrick model [10] [11], and also the 
prevalence condition of reactive worms was presented in 
these papers, pointing out the direction for defending 
against reactive worms in P2P environment. Yang et al. 
designed a dynamic quarantine protocol to defend active 
worms in P2P networks by quarantining the suspicious 
hosts, and he developed a mathematical model of PWPQ 
to prove the effectiveness of this defense method [12].  
Ouyang et al. analyzed the trust mechanism and 
application model, set up a new kind of trust model based 
on P2P network [13], the simulation experiment showed 
this trust model helps improve the success rate of 
transaction. 

The referred works above described the propagation 
process of worms to some extent and provided some 
valuable references for establishing the corresponding 
defense system of worm in P2P networks. But we notice 
quite few works focus on the defense model of reactive 
worms especially in modeling reactive worms’ 
propagation with considerations of the dynamic 
environment such as user behavior, network size, and 
network bandwidth, etc. In some degree they are 
basically untouched. This paper attempts to address this 
issue, and mainly makes the following four contributions. 

(1) We present a propagation strategy of reactive 
worms in dynamic environment, and provide the dynamic 
process of state transition of nodes when reactive worms 
spread in accordance with the strategy. 

(2) On the basis of analyzing pros and cons of existing 
defense models of reactive worms, we develop an 
improved defense model based on mean-field theory and 
deduce a number of key parameters affecting propagation 
speed of reactive worms in dynamic environment. 

(3) We analyze the shortages of the foregoing model, 
put forward some improvement methods. That is, we 
analyze factors including network size and user behavior 

at different time periods and simulate network size using 
probability theory, finally propose a defense model of 
reactive worms based on dynamic time. 

(4) We conduct mathematical analysis to study the 
improved defense model, compare the difference of key 
parameters that affect reactive worm defense between the 
defense model that is based on mean-field theory and the 
one based on dynamic time, and deduce the most crucial 
period within a day for defending against reactive worm 
attack. 

The rest of this paper is organized as follows. Section 2 
presents a propagation strategy of reactive worms in 
dynamic environment, and elaborates the dynamic 
process of state transition of nodes when reactive worms 
spread in accordance with the strategy, section 3 develops 
an improved defense model of reactive worms in P2P 
networks based on mean-field theory, section 4 analyzes 
shortages of the foregoing model and puts forward some 
improvement methods, section 5 compares the difference 
of key parameters that affects reactive worm defense 
between the defense model based on mean-field theory 
and the one based on dynamic time, deduces the most 
crucial period of a particular day for defending against 
reactive worm attack, section 6 proposes the conclusion 
and some future work directions, the acknowledgment is 
put forward in section 7. 

II.  A PROPAGATION STRATEGY FOR REACTIVE WORMS IN 
DYNAMIC ENVIRONMENT 

A.  State Transition of Nodes When Reactive Worms 
Spread 

A P2P nodes has least six states in different stages of 
reactive worms’ propagation, The summary of these 
states are listed as follows: 

(1) Susceptible infected state ( S state): This is the state 
when an online node is vulnerable to worm attack for its 
secure vulnerability. Yet it hasn't downloaded the worm 
file. 

(2) Latent state ( L  state): This is the state when a node 
in S  state has downloaded a worm file from another 
online worm node but the worm file hasn't been executed. 
At this stage, the node cannot be invaded by the same 
type of reactive worm infection. It is not contagious 
either. 

(3) Infected state ( I  state): Once a worm file is 
executed by a node in L  state, the state of this node 
changes from latent state to infected state. At this stage, 
the node is contagious and has already become a worm 
node. 

(4) Quarantined state ( Q  state): Once a node in I  
state is detected by monitoring software for transmitting 
reactive worms, it will be quarantined and its state will be 
converted into quarantined state. At this stage, the node is 
no longer contagious. 

(5) Immune state ( R  state): This is the state when an 
online node has been patched by security software. At 
this stage, the node cannot be infected by reactive worms 
anymore, nor is contagious. 
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(6) Offline state ( O  state): This is the state when the 
node has left P2P networks. 

State transition of nodes is shown in “Fig. 1,” the 
description is as follows: 

When a benign node containing security vulnerabilities 
joins P2P networks, it is in susceptible infected state( S ); 
if it has been patched, it is in immune state( R ); when an 
infectious malignant node just joins P2P networks, it is in 
infected state( I ); when a node in I  state connects to a 
node in S  state, the infected node would inject a worm 
file into the uninfected one with a probability ϕ , when 
the node in S  state has downloaded the worm without 
execution, the state of this node would be converted into 
latent state( L ); and a node in L  state would execute 
worm files with a probability η , then its state will be 
converted into infected state( I ); when a node in I  state 
is detected by monitoring software with the probability 
χ  for transmitting reactive worms, it will be quarantined 
and its state would be converted into quarantined state 
( Q ); if an online node in S  state, L  state, I  state, or Q  
state is found with security vulnerabilities by security 
software in periodic inspection, it would be patched and 
its state would be converted to immune state( R ) at a 
probability 1r , 2r , 3r  and 4r  respectively; all online 
nodes would choose to leave P2P networks with a 
probability α , and if so, their states would then be 
converted into offline state ( O ); meanwhile, all offline 
nodes would choose to join P2P networks with a 
probability β , and their states would then return to 
original states before being offline. And users of some 
offline nodes will reinstall their operation systems with a 
probability δ , thus their states would be converted into 
susceptible infected state ( S ) when being back online. 

( , )β δ

ϕ
1r 2r 3r 4r

η χ

ααβ βα
β

α α β

 
Figure 1.  State transitions of nodes 

III.  A DEFENSE MODEL OF REACTIVE WORMS BASED ON 
MEAN-FIELD THEORY 

A.  Assumptions and Parameters in the Defense Model 
Based on Mean-field Theory 

In order to simplify the modeling process of reactive 
worms based on mean-field theory, the following 
assumptions could be made: 

(1) The number of nodes in P2P networks keeps 
constant. 

(2) Each node has the same online rate and offline rate 
in a unit of time whichever its state is. Each offline node 
will be back to its original state if its operation system 
hasn’t been reinstalled. 

(3) A node in L  state can finish downloading all worm 
fragmentations from other infected nodes in a unit of time. 

(4) Only infected node can spread worm 
fragmentations, which also possibly make it quarantined. 

(5) Although all the worm fragmentations in those 
nodes in Q  state have been cleaned up, there are still 
some vulnerabilities in them and some of them may go 
back to S  state before they are patched. 

(6) Reactive worms will launch the attack based on the 
mixed infection strategy. 

Table I  lists all variables in the model. 
TABLE I.  

VARIABLES IN THE DEFENSE MODEL OF REACTIVE WORMS BASED ON 
MEAN-FIELD THEORY 

Variable Description Initial value

N  The total number of nodes in P2P network 100000N =

dλ  
Downloading rate of a node (The number of 
files that any P2P node can download in a 

unit of time) 
20dλ =  

eλ  
Execution rate of a node (The number of files 

that any P2P node can execute in a unit of 
time) 

8eλ =  

dϕ  
Downloading infection rate (The probability 

of a node in S state that gets infected by 
downloading a file) 

0.3dϕ =

uϕ  
Uploading infection rate (The probability of 

a node in S state that gets infected by 
uploading a file) 

0.2uϕ =

α  Offline rate of an online node 0.01α =

β  Online rate of an offline node 0.9β =  

δ  The probability for an offline node that will 
be back online after reinstalling OS 0.05δ =

η  
Execution infection rate (The probability of a 
node in L state that is infected by executing a 

download file and will be converted into 
infected state) 

0.05η =

χ  

Detection rate (The probability of a node in I 
state is that is detected by monitoring 

software for transmitting reactive worms. 
Then it will be converted into quarantined 

state) 

0.03χ =

λ  
The probability of a node in Q state that will 

go back to S state after clearing up worm 
fragmentation 

0.3λ =  

1r  
The probability of a node in S state found to 
contain security vulnerabilities by security 

software. Then it will be patched and its state 
will be converted into immune state 

1 0.01r =

2r  
The probability of a node in L state found to 
contain security vulnerabilities by security 

software. Then it will be patched and its state 
will be converted into immune state 

2 0.05r =

3r  
The probability of a node in I state found to 
contain security vulnerabilities by security 

software. Then it will be patched and its state 
will be converted into immune state 

3 0.08r =

4r  
The probability for a node in Q state is found 
to contain security vulnerabilities by security 
software, it will be patched and its state will 

be converted into immune state 
4 0.1r =

( )NS t
The number of online nodes in susceptible 

infected state at the time where (0)NS  
indicates  the total number of nodes in 

( ) 99000NS t =

 

 susceptible infected state in P2P networks 
initially  

( )OS t The number of offline nodes in susceptible 
infected state at time t 

( ) 0OS t =
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Figure 2.  How the downloading rate of a node affects reactive worm 

propagation. 
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Figure 3.  How the execution rate of a node affects reactive worm 

propagation 

( )NL t  The number of online nodes in latent state at 
time t 

(0) 0NL =

( )OL t  The number of offline nodes in latent state at 
time t 

(0) 0OL =

( )NI t  

The number of online nodes in infected state 
at time t, where I (0)N  indicates  the total 

number of nodes in infected state in 
P2P networks initially 

(0) 1000NI =

( )OI t  The number of offline nodes in infected state 
at time t 

( ) 0OI t =

( )NQ t  The number of online nodes in quarantined 
state at time t 

(0) 0NQ =

( )OQ t  The number of offline nodes in quarantined 
state at time t 

(0) 0OQ =

( )NR t  The number of online nodes in immune state 
at time t 

(0) 0NR =

( )OR t  The number of offline nodes in immune state 
at time t 

(0) 0OR =

( )A t  
The number of additional online nodes 

whose states have converted from 
susceptible infected state to latent state at 

time t 

(0) 0A =

( )O t  The number of nodes in offline state at time t (0) 0O =

B.  A Defense Model of Reactive Worms Based on Mean-
Field Theory 
The defense model of reactive worms based on mean-
field theory should meet the following theorems: 
Theorem 1:  

1

0
( ) ( )(1 )t t i

o Ni
S t S iα β−

−
=

= −∑  
1

0
( ) ( )(1 )t t i

o Ni
E t E iα β−

−
=

= −∑   
1

0
( ) ( )(1 )t t i

o Ni
I t I iα β− −

=
= −∑  

1

0
( ) ( )(1 )t t i

o Ni
Q t Q iα β−

−
=

= −∑   
1

0
( ) ( )(1 )t t i

o Ni
R t R iα β−

−
=

= −∑  
Theorem 2:   

( )

( ) ( ){ ( ) / ( ( ))
[1 (1 1/ ( ( ))) ]}d N

N d d N

I t
u

A t S t I t N O t
N O t λ

ϕ λ
ϕ

= −
+ − − −  

Theorem 3:   

1

( ) / (1 ) ( ) ( ) ( )
( ) ( ) ( )

N o

N

dS t dt S t O t Q t
A t r S t

δ β δβ λ
α

= − + +
− − +  

Theorem 4:   
2( ) / (1 ) ( ) ( ) ( )

( ) ( )[1 (1 ) ]e

N o

N N

dL t dt L t A t r
L t L t λ

β δ α
η

= − + − +
− − −i  

Theorem 5:   

3

( ) / (1 ) ( ) ( )[1 (1 ) ]
( ) ( )

eN o N

N

dI t dt I t L t
r I t

λβ δ η
α χ

= − + − −
− + +  

Theorem 6: 

4

( ) / (1 ) ( ) ( )
( ) ( )

N o N

N

dQ t dt Q t I t
r Q t

β δ χ
α λ

= − +
− + +  

Theorem 7:  
1 2

3 4

( ) / (1 ) ( ) ( ) ( )
( ) ( ) ( )

N o N N

N N N

dR t dt R t r S t r L t
r I t r Q t R t

β δ
α

= − + +
+ + −  

Theorem 8:   
( ) / [ ( ) ( ) ( )

( ) ( )] ( )
N N N

N N

dO t dt S t L t I t
Q t R t O t

α
β

= + +
+ + −  

Due to space limitation, we leave their proof omitted. 
And we advise interested readers pay attention to the 
author’s follow-up papers for it. 

C.  Numerical Simulation and Analysis of Defense Model 
Based on Mean-field 

The defense model of reactive worms based on mean-
field theory should meet the following theorems: 

Having developed the defense model of reactive 
worms, the next stage is to conduct simulation 
experiments by MATLAB. Some important experimental 
results are listed as follows. 

“Fig. 2” shows the influence of downloading rate of a 
node on the propagation speed of reactive worms. It can 
be seen from the figure that the higher the downloading 
rate of a node is, the faster reactive worms will spread. 
When the downloading rate of a node exceeds 10, the 
propagation speed of reactive worms will not be 
significantly increased. 

 
“Fig. 3” shows the influence of execution rate of a 

node on the propagation speed of reactive worms. It can 
be seen from the figure that the higher the execution rate 
of a node is, the faster reactive worms will spread. When 
the execution rate of a node is limited to be less than 3, 
the propagation speed of reactive worms can be 
effectively delayed. 

“Fig. 4” shows the influence of offline rate of an online 
node on the propagation speed of reactive worms. It can 
be seen from the figure that the higher the offline rate of 
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Figure 4.  How the offline rate of a node affects reactive worm 

propagation 
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Figure 5.  How the detection rate of a node affects reactive worms’ 

propagation 

an online node is, the slower reactive worms will spread. 
When the offline rate of a node is greater than 0.1, the 
propagation speed of reactive worms will be effectively 
delayed. 

“Fig. 5” shows the influence of detection rate of 
monitoring software on the propagation speed of reactive 
worms. It can be seen from the figure that the higher the 
detection rate of monitoring software is, the slower 
reactive worms will spread. When the detection rate 
exceeds 0.3, the propagation speed of reactive worms can 
be obviously delayed. This suggests that the propagation 
speed of reactive worms can be effectively delayed by 
improving detection density of monitoring software. 

IV.  RESEARCHES AND MODIFICATION TO DEFENSE 
MODEL OF REACTIVE WORMS BASED ON MEAN-FIELD 

THEORY 

Although defense models of reactive worms based on 
mean-field and epidemiologic theories can roughly 
predict the infection ratio, the spread trend and the key 
points to defense reactive worms, they do not accurately 
match the defense process of reactive worms in dynamic 
environment. Because lots of parameters that influence 
the accuracy of these defense models are estimated under 
ideal conditions, these estimations are not adequate in 
reality. To address this issue, this paper presents a 
defense model based on dynamic time, then makes some 
improved methods to estimate the key parameters for 
ensuring the reliability and validity of our model. This 
section first analyses the deficiency of the foregoing 
defense model. 

A.  Deficiency of Defense Models Based on Mean-Field 
Theory 

Such foregoing defense models based on mean-field 
theory studied the effect of P2P churn on defense effect 
of reactive worms under the hypothesis that the number 
of nodes in P2P networks remains basically unchanged 
within 24 hours, a day. This assumption is obviously 
unsuited to users' online habits. 

Such foregoing defense models based on mean-field 
theory assume that all the nodes in L state can finish 
downloading each worm fragmentation within a unit of 
time. This assumption fails to consider the impact of the 
fragmentation size, network bandwidth, security 
awareness of user nodes and the number of seed nodes 
that probably provide worm fragmentations for user 
nodes to download during propagation. 

Such foregoing defense models based on mean-field 
theory define the execution infection rate η  as a constant. 
This is obviously inaccurate. Similarly, parameters 
including eλ , χ , 1r , 2r , 3r and 4r  should not be defined as 
constants either. 

B.  Improvements to Defense Models Based on Mean-
Field Theory 

Realistically, the size of online nodes is considerably 
different within a particular day. Most worms will take 
long time to reach the maximal infection peak from the 
beginning of attacks, the propagation of reactive worms is 
much more influenced by the network scale change, 
which heavily depends on users' habits during this period. 
Therefore the change rate of network scale has also been 
taken into consideration in our improved defense model. 

In reality, the bigger and the smaller the worm 
fragmentation size and the network bandwidth are 
respectively, the lower the security awareness of user 
nodes is; the fewer the number of seed nodes providing 
worm fragmentation is, the longer a node in L  state will 
take to download all the worm fragmentation and the 
larger the probability that a node in L state is detected by 
monitoring software is. Hence four parameters 
WormSize (represents the average size of worm 
fragmentation), Bandwidth (represents the average 
network bandwidth), SecAw (represents the security 
awareness of user nodes) and SeedNum (represents the 
number of seed nodes) are added in our improved defense 
model. Meanwhile, the probability θ  that a node in L  
state is converted into S  state has also been added. 

In our improved defense model, those dynamic 
parameters such asη eλ χ 1r 2r 3r and 4r  are defined as 
mathematical functions associated with SecAw  and 
ρ (represents infection coverage of reactive worms). 

Two given parameters δ  and λ  have limited effect on 
the propagation of reactive worms, they are ignored in 
our improved defense model. In the same way, offline 
state will not be considered in our improved model. 
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Figure 6.  Online user distribution within 24 hours a day 

V.  A DEFENSE MODEL OF REACTIVE WORMS BASED ON 
DYNAMIC TIME 

A.  Analysis on the Network Size with Consideraton of 
Users' Online Habits 

Time consumed on Internet of the public shows certain 
regularity in real world. “Fig. 6” shows the distribution 
within 24 hours a day according to the CNNIC's statistics 
in the twentieth statistical report of Internet development 
in China [14]. 

As we see from “Fig. 6”, the number of online users 
stays lowest from 1 a.m. to 7 a.m., and this number will 
gradually increase after 8 a.m. The trend will continue 
ascending until it reaches its first local maximum at 10 
a.m. with roughly 30 percent of user nodes online. Then 
the number of online users will slightly drop down at 
around 11 a.m., while the figure keeps rising from 12 a.m. 
to 3 p.m. and reach the second local peak of a day with 
around 40 percent of user nodes online. Then the 
percentage falls slowly again after 3 p.m. There is a sharp 
rise in the number of online users around 6 p.m., and the 
figure will reach its third peak, the global maximum of a 
day at 9 p.m. with about 60 percent of user nodes online. 
Later on, the percentage falls rapidly and this trend will 
continue until 5 a.m. with only 2 percent of user nodes 
online still, also the minimum of a day. Moreover, the 
statistical report notes only 13 percent of user nodes have 
no fixed Internet time, while the remaining 87 percent 
does and follows the pattern mentioned. 

On the basis of the above analytic results, we make the 
following assumptions about the dynamic changing 
regularity of the network size within 24 hours in a day. 

Since most ordinary users are sleeping from 4 a.m. to 6 
a.m., we define these nodes who stay online during these 
hours as “forever online nodes”, and the number of this 
kind of user nodes remains constant of a day. 

User nodes in our improved model are classified into 
two categories: working nodes and leisure nodes. The 
time consumed on Internet of working nodes is mainly 
during the working hours between 9 a.m. to 5 p.m. and 
the online time of leisure nodes is mainly spent during 
leisure hours which we assume as 7 p.m. to 12 p.m. 

To simplify this model, we assume that all the working 
nodes or leisure nodes are online at their peak of a day. 

As addressed before, there are only 8 working hours in 
a day and most users surf the Internet using leisure nodes 
at home. We set the number of leisure nodes equal to be 
1.5 times than the amount of working nodes. 

Both the number of working online nodes and leisure 
online nodes of a day are subject to the distributing rules 
mentioned above. 

B.  Assumptions and Parameters in the Defense Model 
Based on Dynamic Time 

In order to simplify the modeling process of reactive 
worms, following assumptions are made: 

(1) The number of online nodes in P2P networks is a 
dynamic variable that varies with time. 

(2) P2P nodes are divided into two categories: one is 
forever online nodes that account for 4% of the total; the 
other is temporarily online nodes accounting for 96% of 
the total. As noted above, the temporarily online nodes 
can be further classified as working online nodes and 
leisure online nodes. The former accounts for 38.4% of 
the total, while the latter occupies 57.6%. Besides, the 
number of online nodes in various states is subject to this 
proportion. 

(3) In various periods of a day, the number of 
temporarily online nodes is subject to a range of Poisson 
distribution with different parameters. 

(4) The probability θ  and 2r  are directly proportional 
to parameters WormSize  and SecAw , and inversely 
proportional to parameters Bandwidth  and SeedNum . 
While the probability η  follows the opposite law toθ  or 

2r with parameters. 
Table II lists all variables in our improved defense 

model. 
TABLE II. 

VARIABLES IN THE DEFENSE MODEL OF REACTIVE WORMS BASED ON 
DYNAMIC TIME 

Variable Description Initial values 

( )N t  The total number of nodes in P2P 
networks at time t 

(1) 16417N =

dN  The total number of forever online 
nodes in P2P networks 

10417dN =  

( )tN t  
The total number of temporarily 
online nodes in P2P networks at 

time t 
(1) 6000tN =  

( )twN t  The total number of working online 
nodes at time t 

(1) 0twN =  

( )trN t  The total number of leisure online 
nodes at time t 

(1) 6000trN =

twP  The maximum peak of working 
online nodes of a day 

100000twP =  

trP  The maximum peak of leisure 
online nodes of a day 

150000trP =  

WormSize The average size of worm 
fragmentation 

6WormSize MB=
 

( )
SeedNu

m t−
 The number of seed nodes at time t 

(1) 8.2SeedNum =
 

( )tρ  The infection coverage of reactive 
worms at time t, and ( ) ( ) / ( )t I t N tρ =  (1) 0.01ρ =  

( )SecAw t
 

The security awareness function of user 
nodes at time t, and 

( ) 0.3 1.1 ( )SecAw t tρ= + ×  
(1) 0.311SecAw =
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( )tθ  The probability for a node in L state to 
be converted into S state at time t 

(1) 0.0724θ =

( )tη  
The probability for a node in L state  

infected by executing a download file at 
time t 

(1) 0.051η =  

dλ  
Downloading rate of a node (The 

number of files that any P2P node can 
download in a unit of time) 

20dλ =  

( )e tλ  
Execution rate of a node at time t (The 
number of files that this P2P node can 

execute in t unit of time) 
(1) 20eλ =  

dϕ  
Downloading infection rate (The 

probability of a node in S state infected 
by downloading a file) 

0.3dϕ =  

uϕ  
Uploading infection rate (The 

probability of a node in S state infected 
by uploading a file) 

0.2uϕ =  

( )tχ  
The probability of a node in I state that 

is converted into Q state at time t, where 
( ) 0.1 ( )t SecAw tχ = ×  

(1) 0.0311χ =

1( )r t  

The probability of a node in S state 
found to contain security vulnerabilities 
by security software, then its state will 

be converted into immune state at time t. 
1( ) 0.08 ( )r t SecAw t= ×  

1(1) 0.0249r =

2 ( )r t  

The probability of a node in L state 
found to contain security vulnerabilities 
by security software, then its state will 

be converted into immune state at time t. 
2 ( ) 0.08 ( ) lg[ ( )

/ ]
r t SecAw t SeedNum t

Bandwidth WormSize
= ×

+
 

2 (1) 0.0241r =

3 ( )r t  

The probability of a node in I state 
found to contain security vulnerabilities 
by security software, then its state will 

be converted into immune state at time t. 
3 ( ) 0.15 ( )r t SecAw t= ×  

3 (1) 0.0466r =

4 ( )r t  

The probability for a node in Q state 
found to contain security vulnerabilities 

by security software, then it will be 
patched and its state will be converted 

into immune state at time t. 
4 ( ) 0.2 ( )r t SecAw t= ×  

4 (1) 0.0622r =

( )S t  
The number of online nodes in S state at 
time t, where (1)S  indicates  the total 

number of nodes in S state in 
P2P networks initially 

(1) 16253S =  

( )L t  The number of online nodes in L state at 
time t 

(1) 0L =  

( )I t  

The number of online nodes in I state at 
time t, where I(1)  indicates  the total 

number of nodes in I state in 
P2P networks initially 

(1) 164I =  

( )Q t  The number of online nodes in Q state at 
time t 

(1) 0Q =  

( )R t  The number of online nodes in R state at 
time t 

(1) 0R =  

C.  A Defense Model of Reactive Worms Based on 
Dynamic Time 

Having proposed model assumptions and parameter 
elucidations, our next stage is to develop the improved 
defense model based on dynamic time. The modeling 
methodology based on dynamic time is similar to the one 
based on mean-field theory. The key of the improved 
modeling methodology is how to estimate the number of 
online nodes in various states at different times within a 
day. This section will focus on resolving this problem. 

In this model, variable t  represents different hours of a 
day, and the number of online nodes at different times of 
a day can be discussed the way as follows: 

(1) The discussion on the number of working online 
nodes at different times of a day. 

When 1 6t = − , sleeping time for ordinary users, the 
number of working online nodes at this period is set as 0. 
That is ( ) 0 ( [1,2,..6])twN t t= ∈                                      (1) 

When 7 15t = − , the number of working online nodes 
gradually increases because most users begin working 
and major stock exchanges throughout the world open 
one after another. The number of working online nodes 
keeps growing within this period, and this figure will 
reach the peak at 3 p.m. The changing trend of working 
online nodes during this period obeys the Poisson 
distribution of parameter 2.6. That is  

7

0

( )

( / !) ( 2.6, [7,8,...,15])
tw tw

t
k

k

N t P

k e tλλ λ−
−

=

=

= ∈∑
i

i
(2) 

When 16 24t = − , almost the end of daily working 
hours, the number of working online nodes continue to 
retreat from its peak at 3 p.m. until it finally reduces to be 
zero. Given individual users might do extra work at night, 
the descending trend of the number of working online 
nodes will continue to 12 p.m. The changing trend of 
working online nodes during this period also conforms to 
the Poisson distribution of parameter 3.3. That is 

          
16

0
( ) (1 ( / !) )

( 3.3, [16,17,..., 24])

t
k

tw tw k
N t P k e

t

λλ
λ

−
−

=
= −

= ∈
∑ i

                 (3) 

When 15t > , 7

0
( / !) 1t

k
tw k

P k e λλ−
−

=
=∑ i . Combining the 

three Equations (1) (2) (3), the change of working online 
nodes within 24 hours a day can be calculated as follows: 

 
7 7

2.6 3.3
0 0

( ) ( (2.6 / !) (3.3 / !) )t t
k k

tw tw k k
N t P k e k e− −

− −
= =

= −∑ ∑i i ,  
                           And 1 24t≤ ≤                                (4) 
(2) The discussion on the number of leisure online 

nodes at different times of a day. 
When 1 3t = − , most ordinary users are sleeping, while 

only a few users are playing online games or watching 
online videos. Therefore the number of this part of users 
is on the decline, the change of leisure online nodes 
during this period conforms to the Poisson distribution of 
parameter 1.3. That is 

2

0
( ) (1 ( / !) ) ( 1.3, [1, 2,3])t

k
tr tr k

N t P k e tλλ λ+
−

=
= − = ∈∑ i  

(5) 
When 4 18t = − ,most users are either resting or 

working, few of leisure online nodes are being used at 
this period, so the number of leisure online nodes at this 
period is set as 0. That is ( ) 0 ( [4,5,...,18])trN t t= ∈     (6) 

When 19 22t = − , the leisure online nodes are being 
used in large amounts, so the number of leisure online 
nodes will rapidly climb to the maximum peak of a day. 
The change of leisure online nodes during this period also 
conforms to the Poisson distribution of parameter 0.5. 
That is 
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Figure 7.  How the downloading rate of a node affects reactive worm 

propagation in improved model 

19

0
( ) ( / !)t

k
tr tr k

N t P k e λλ−
−

=
= ∑ i ,  0.5,λ =  

                           [19,20, 21,22]t ∈                             (7) 
When 23 24t = − , it's again time for bed, causing the 

number of leisure online nodes rapidly decreases. The 
change of leisure online nodes during this period obeys 
the Poisson distribution of parameter 1.3. That is  

23

0
( ) (1 ( / !) ) ( 1.3, [23, 24])t

k
tr tr k

N t P k e tλλ λ−
−

=
= − = ∈∑ i

                                                                                        (8) 
When 3t > , the equation 2

1.3
0

1 (1.3 / !) 0t
k

k
k e+

−
=

− =∑ i  
is valid, no matter what value the variable t  is. And 
when 22t > , the equation 19

0.5
0

(0.5 / !) 1t
k

k
k e−

−
=

=∑ i  is 
valid, no matter what value the variable t  is. Combining 
the four Equations (5) (6) (7) (8), the change of leisure 
online nodes within 24 hours a day can be calculated as 
following equation (9).  

2 19 23
1.3 0.5 1.3

0 0 0

1.3 0.5 1.3( ) (1 )
! ! !

t t tk k k

tr tr
k k k

N t P e e e
k k k

+ − −
− − −

= = =

= − + −∑ ∑ ∑
  

And    1 24t≤ ≤ .                                                       (9) 
(3) In conclusion, the change of all the online nodes 

within 24 hours a day can be calculated as following 
Equation (10). 

7 72.6
3.3

0 0

2 19 23
1.3 0.5 1.3

0 0 0

( ) ( ) ( ) ( )
2.6

3.3( ) (1!
!

1.3 0.5 1.3 )
! ! !

d t d tw tr

k
t t k

d tw tr
k k

t t tk k k

k k k

N t N N t N N t N t

e
N P e Pk

k

e e e
k k k

− −−
−

= =

+ − −
− − −

= = =

= + = + +

= + − +

− + −

∑ ∑

∑ ∑ ∑

 

And  1 24t≤ ≤                                                         (10) 
In this improved defense model, the change of nodes in 

S  state in a unit of time is composed of four parts. The 
first part will be converted into L  state for downloading 
worm fragmentation from infected nodes; the second part 
will be converted into L  state for uploading some 
resource to infected nodes; the third part is converted 
from nodes in L  state because these latent nodes are 
found to contain worm fragmentation by security 
software before their states are converted into S  with 
worm fragmentation being removed; the fourth part will 
be converted into R  state because these nodes in S  state 
are found to contain security vulnerabilities by security 
software, they will be patched and their states will be 
converted into immune state. Given the above, the change 
rate of nodes in S  state satisfies the following Equation 
(11). 

    
( )

1

( ) / ( ) ( ) [ ( ) / ( )
{1 [1 1/ ( )] } ( )] ( )d

d d

I t
u

dS t dt t L t I t N t
N t r t S tλ

θ ϕ λ
ϕ

= − +
− − +

       

(11) 
The same theory proves that the change rate of nodes 

in L state satisfies the following Equation (12). 
( )

( )
2

( ) / [ ( ) / ( ) {1 [1 1/ ( )] }]
( ) { ( ) ( ) {1 [1 ( )] }} ( )

d

e

I t
d d u

t

dL t dt I t N t N t
S t t r t t L t

λ

λ

ϕ λ ϕ
θ η

= + − −
− + + − −  

(12) 

The change rate of nodes in I  state satisfies the 
following Equation (13).  

( )
3( ) / {1 [1 ( )] } ( ) [ ( ) ( )] ( )e tdI t dt t L t r t t I tλη χ= − − − + (13) 

The change rate of nodes in Q  state satisfies the 
following Equation (14).    

             4( ) / ( ) ( ) ( ) ( )dQ t dt t I t r t Q tχ= −                  (14) 
And the change rate of nodes in R  state satisfies the 

following Equation (15).  
1 2 3 4( ) / ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dR t dt r t S t r t L t r t I t r t Q t= + + +   

(15) 
For the sake of brevity, we leave their proof omitted. 

D.  Numerical Simulation and Analysis of Defense Model 
Based on Dynamic Time 

There are three steps to count the number of infected 
nodes:  

The first step is to initialize the number of online nodes 
in all states during a first time period, the second step is 
to calculate the change in numbers of online nodes in all 
states during the same period of time according to the 
formula (11-15), the third step is to reckon the actual 
number of online nodes during a second time period  
according to the formula (10), the fourth step is to 
initialize the number of online nodes in all states during a 
second time period according to the proportion of 
different states of online nodes that has been calculated in 
second step and the actual number of online nodes that 
has been reckon in third step, then the change in numbers 
of online nodes in all states during the second period of 
time can be calculated in the fifth step, The rest can be 
done in the same manner, until the number change of 
online nodes in all states for 24 hours within a day has 
been calculated. 

Key parameters affecting reactive worm defense in real 
environment can be deduced by adjusting the parameters 
in our improved defense model. 

“Fig. 7” shows the influence of downloading rate of a 

node on the defense of reactive worms in this improved 
model. It can be seen from the figure that the higher the 
downloading rate of a node, the larger the number of 
online nodes infected by reactive worms will be. This 
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Figure 8.  How the downloading infection rate of a node affects 

reactive worm propagation in improved model  
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Figure 9.  How the initial value of SecAw affects reactive worm 

propagation in improved model 
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Figure 10.  How the initial value of immunity system affects reactive 

worm propagation in improved model 

parameter has great effects on the defense of reactive 
worms, if large amount of reactive worms have been 
found in P2P networks, the propagation of reactive 
worms can be effectively controlled by restricting the 
downloading rate of each node. 

“Fig. 8” shows the influence of downloading infection 
rate of a node on the defense of reactive worms in this 

improved model. It can be seen from the figure that the 
higher the downloading infection rate of a node stays, the 
larger the number of online nodes infected by reactive 
worms will be. 

“Fig. 9” shows the influence of the initial value of the 
security awareness function of user nodes on the defense 
of reactive worms in this improved model. In this 
improved model, those parameters such as 

( )tθ , ( )e tλ , ( )tχ , 1( )r t , 2 ( )r t , 3 ( )r t , 4 ( )r t  are all related to 
the security awareness function of user nodes. It can be 
seen from the figure that the higher the security 
awareness of a user node is, the fewer the number of 
online nodes infected by reactive worms will be and also 
the better the defense effect of reactive worm can be 
obtained. Therefore cyber-safety education should be 
expanded to all ranges of Internet users for raising their 
knowledge level and safe consciousness, which 
effectively help defense against reactive worms in P2P 
networks. 

“Fig. 10” shows the influence of the initial value of 
immunity system on the defense of reactive worms in this 

improved model. It can be seen from the figure that the 
higher the initial value of immunity system is, the fewer 
the number of online nodes infected by reactive worm 
will be and the better the defense effect of reactive worm 
can be. 

In conclusion, user's online habits give it a rise to the 
most significant impact on the worm attack according to 
these simulation results. As you can see from these 
figures, only few of online P2P nodes are infected by 
reactive worms between 1 a.m. and 4 a.m. because most 
users are sleeping; the number of online P2P nodes 
infected by reactive worms begin ascending between 4 
a.m. and 11 a.m. because most users go to work during 
this period; however the number of online infected nodes 
remains very limited even during peak hours. The major 
reason for this is that most leisure nodes that occupy the 
mainstream of P2P networks are not at working hours 
during this period, meanwhile only few working nodes 
join P2P networks, seriously restricting the developing 
speed of reactive worms; the number of online nodes in 
P2P networks further reduces form 11 a.m. to 6 p.m. 
because major stock exchanges close and most users go 
home from working; and the number of P2P nodes 
infected by reactive worms will fall from the previous 
peak to relatively lower level; the peak of infection of a 
day occurs during 6 p.m. and 12 p.m.; the maximum of 
the number of infected nodes appears about 8 p.m. 
because most leisure nodes have joined to P2P networks 
by that time; the peak hour of surfing on the internet also 
appears at 8 p.m., offering an opportunity for reactive 
worms’ sudden spread, meanwhile the number of online 
P2P nodes infected by reactive worms is booming; the 
number of infected P2P nodes will decrease rapidly 
within bed time after 10 p.m. Obviously the most crucial 
time of defending reactive worms is from 6 p.m. to 10 
p.m. In order to effectively guard against reactive worms’ 
attack in P2P networks and ensure the availability of 
normal operations of P2P networks, we should increase 
strength on key nodes’ supervision, speed up the 
frequency of scanning vulnerability during particular 
periods within a day. 
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VI.  CONCLUSION AND FUTURE WORK 

In the paper, firstly we proposed a propagation strategy 
of reactive worms in dynamic environment and provided 
the process of nodes’ state transition when reactive 
worms spread in accordance with the strategy proposed; 
second we developed a defense model based on mean-
field theory; third, we analyzed shortages of the foregoing 
model and proposed an improved defense model of 
reactive worms based on dynamic time; finally we 
compared the difference among key parameters that 
affect reactive worm defense between the model based on 
mean-field theory and the one based on dynamic time  
and deduced the most important period of a day for 
defending against reactive worm attack. 

Future work will involve how to improve the detection 
rate of monitoring software according to the 
characteristics of reactive worms, how to improve the 
accuracy of the defense model of reactive worms by 
considering the trust relationship and social nature 
between P2P nodes upon the propagation of reactive 
worms and how to build an efficient defense system to 
prevent reactive worms based on these works. 
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